

Herzlich willkommen

Ihr heutiges Web-Seminar Team:

Moderatorin

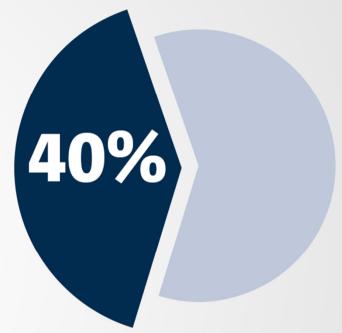
Referent

Dipl.-Ing.

Martin Fenchel

Entwickler

Referent


Dipl.-Ing.
Rene Ziegler
Produktmanager



Anteil des Gebäudesektors am Energieverbrauch in Deutschland

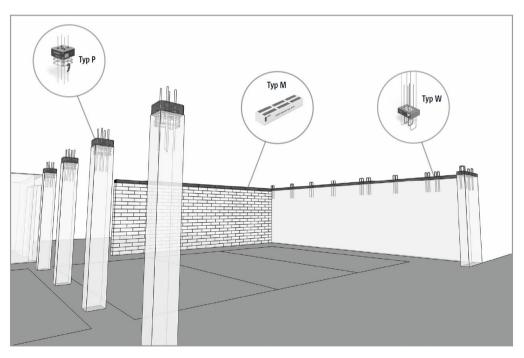
Die neue Produktfamilie Schöck Sconnex®

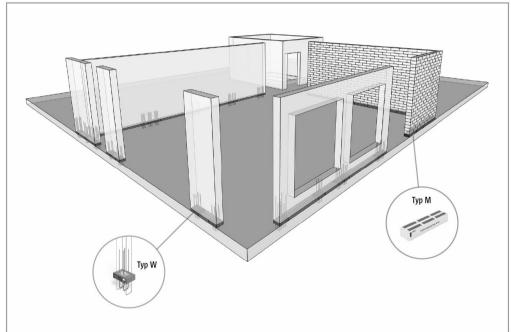
Sconnex® Typ P

Deutsche Zulassung
 Z-15.7-351

Sconnex® Typ W

 Österreichische Zulassung BTZ0002


Sconnex® Typ M


Deutsche ZulassungZ-17.1-709 + Z-17.1-749

Dämmung am Wand- und Stützenkopf

Dämmung am Wandfuß



Aufbau und Elemente

Sconnex® Typ P

- für quadratische Stahlbetonstützen
 250 x 250 mm
- bestehend aus Part C und Part T

Grundlagen

Sconnex® Typ P

Reiner Druckanschluss

- Part C vollständig überdrückt → Ausmitte max. b/6
- keine planmäßigen Horizontallasten → horizontal ausgesteifte Systeme

Combar® nur konstruktiv

- keine Zug- oder Druckkraftübertragung durch Combar®
- Stütze als durchgängig bewehrt betrachten
- Einbauhilfe

3D-Druckspannungszustand

- erhöhte Tragfähigkeit durch Querdruck aufgrund
 - Part T (unterhalb Part C, in Stütze)
 - Negatives Stützmoment (oberhalb Part C, Deckenplatte)

Einbau stehend oder liegend

- stehend: Ortbeton mit planmäßiger Druckfuge, Verguss mit Pagel
- liegend: Fertigteilwerk, kein Pagel erforderlich

Brandschutz

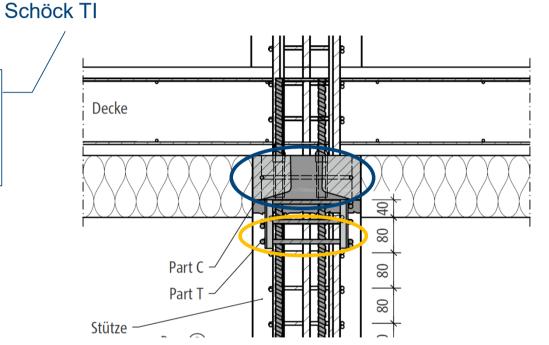
Neues Bemessungskonzept für Schöck: M-N-Interaktionsdiagramme mit $M_{Rd,fi}$ und $N_{Rd,fi}$

Technische Daten

Beispiel: Sconnex® Typ P-B250-1.0

Tragfähigkeit	900 kN -	- 1.200 kN
Zulässige Betongüten	C25/30 -	- C50/60
Anschluss	aktuell n	ur am Stützenkopf (Zulassung)
Stützenhöhe		nfachter Bemessung: > 2,50 m uerem Nachweis nach Th. II. O. vollständig variabel
Brandschutz		nte Höhe: < 2,85 m 0, R30 - abhängig von Belastung, Betongüte und Betondeckung

Nachweis Tragfähigkeit **SCHÖCK** © 2021 Folie 13


Grundlagen Tragfähigkeit

Sconnex® Typ P

- Nachweis erfolgt als Minimum aus
 - Tragfähigkeit Stützenanschluss

•
$$N_{Rd} = min \begin{cases} N_{Rd,c} \rightarrow \text{Ortbeton, unbewehrt} \\ N_{Rd,LC} \rightarrow \text{Sconnex Part C} \end{cases}$$

- Knicknachweis Stütze
- Einflussgrößen für N_{Rd.c}
 - Ortbetongüte: hoch
 - Anzahl Längsstäbe: gering
 - Bewehrungsgrad: vernachlässigbar
 - Stützenschlankheit: -

Nachweis der Drucktragfähigkeit

Zwei Verfahren – Zulassung Z-15.7-351

Vereinfachter Nachweis

- nur Innenstützen zulässig
- Annahme von pauschal 20 mm Ausmitte
- Anwender prüft Einhaltung der Randbedingungen
 - Gleichmäßig verteilte Nutzlasten ≤ 5 kN/m²
 - Stützenhöhe ≥ 2,50 m
 - Stützweitenverhältnis Randfeld : 1. Innenfeld 0,5 ≤ L₁/L₂ ≤ 2
 - Deckenspannweite ≤ 7,5 m
 - Deckendicke ≥ 25 cm bei Spannweite 7,5 m
 ≥ 20 cm bei Spannweite 5,0 m
- Ablesung Tragfähigkeit N_{Rd} aus Tabelle C1

Allgemeiner Nachweis

- Innen- und Randstützen zulässig
- Genaue Berechnung der Ausmitten e_x, e_y
- keine weiteren Anwendungsgrenzen
- Ablesung max. Tragfähigkeit N_{Rd,0} bei zentr. Druck (e = 0) aus Tabelle C2
- Abminderung aufgrund Ausmitte (Spannungsblockverfahren)

$$N_{Rd} = N_{Rd,0} \cdot \left(1 - \frac{2 \cdot e_x}{b_x}\right) \cdot \left(1 - \frac{2 \cdot e_y}{b_y}\right)$$

Nachweis der Drucktragfähigkeit

Vergleich der Nachweise

Vereinfachter Nachweis – pauschale Ausmitte von e = 20 mm

Schöck Sconnex® Typ P							
Domossum sauvorta hai		Betonfestigkeitsklasse					
Bemessungswerte bei	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60	
Abstand Längsstäbe der Stütze [mm]	Normalkraft (Druck bei e = 20 mm) N _{Rd,z} [kN/Element]						
≤ 150	904	1016	1119	1207	1207	1207	
≤ 75	954	1069	1171	1207	1207	1207	
≤ 50	974	1090	1191	1207	1207	1207	

Allgemeiner Nachweis – Grundwerte bei zentrischem Druck (e = 0 mm)

Schöck Sconnex® Typ P						
Domossum osuvovto hoi	Betonfestigkeitsklasse					
Bemessungswerte bei	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Abstand Längsstäbe der Stütze [mm]	Normalkraft (Druck bei e = 0 mm) $N_{Rd,z,0}$ [kN/Element]					
≤ 150	1076	1210	1332	1443	1443	1443
≤ 75	1136	1273	1394	1443	1443	1443
≤ 50	1160	1298	1418	1443	1443	1443

$$\cdot \left(1 - \frac{2 \cdot e_{x}}{b_{x}}\right) \cdot \left(1 - \frac{2 \cdot e_{y}}{b_{y}}\right)$$

Nachweis Brandschutz SCHÖCK © 2021 Folie 17

Jetzt sind Sie gefragt

Was ist bei Ihnen der häufigste Wert für η_{fi} (eta_fi) bei der Brandbemessung von Stützen an Wohn- und Bürogebäuden?

Nachweis Brandschutz

Tragfähigkeit im Lastfall Brand: außergewöhnliche Einwirkung (DIN EN 1992-1-2)

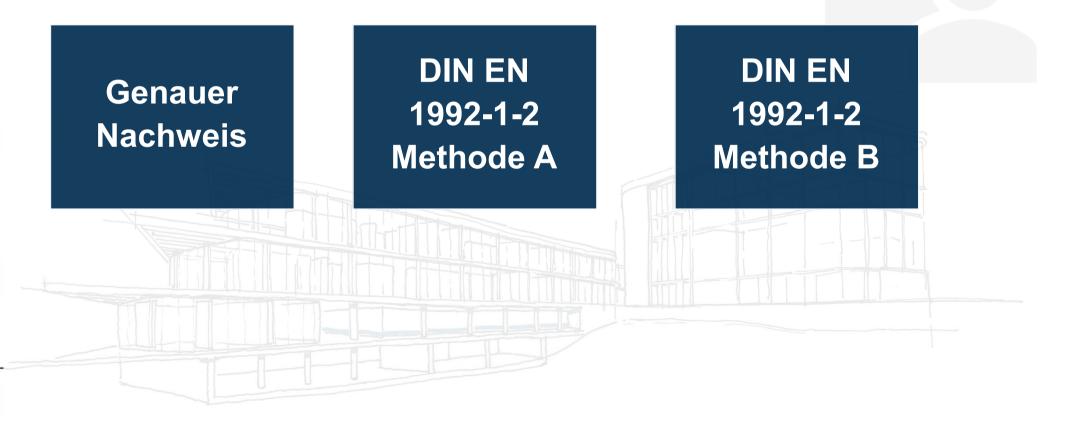
- Paradigmenwechsel Schöck
 - bisher (Isokorb®):
 - Designlasten (kalt) «können R120»
 → vereinfachter Nachweis (η_{fi} = 0,7)
 - keine Interaktion zwischen M, V
 - neu (Sconnex® Typ P):
 - Designwiderstände für Brandfall R_{d,fi} (fi = fire)
 - Interaktion von N_{Rd fi} und M_{Rd fi}
- Anwender: außergewöhnliche Einwirkung
 - Lastkombination $E_{d,fi} = G_k + \psi_{2i} Q_{k,i}$
- Nachweis: E_{d,fi} < R_{d,fi}

Nachweis Brandschutz

Tragfähigkeit im Lastfall Brand → außergewöhnliche Einwirkung (DIN EN 1992-1-2)

- Paradigmenwechsel Schöck
 - bisher (Isokorb®):
 - Designlasten (kalt) «können R90»
 → vereinfachter Nachweis (η_{fi}=0,7)
 - keine Interaktion zwischen M, V
 - neu (Sconnex® Typ P):
 - Designwiderstände für Brandfall R_{d,fi} (fi = fire)
 - Interaktion von N_{Rd.fi} und M_{Rd.fi}
- Anwender: außergewöhnliche Einwirkung
 - Lastkombination $E_{d,fi} = G_k + \psi_{2i} Q_{k,i} = \eta_{fi} \cdot E_d$
- Nachweis: E_{d.fi} < R_{d.fi}

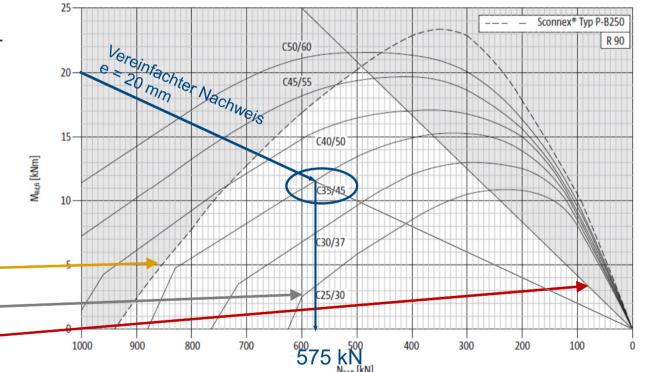
_		arigeeen	., Dii i		. –	
	0,3	3-0,6				
	$\eta_{fi} = \frac{G_k + \psi_{fi} Q_{k,1}}{\gamma_G G_k + \gamma_{Q,1} Q_{k,1}}$		- = -	$=\frac{E_{d,fi}}{E_{d}}$		
	1,35	1,5				
				ηfi		
	Manh #14!a a	n/1	n/2	w2 Verkaufer	n/2	


→ Exkurs Finwirkungsseite DIN FN 1992-1-2

		ηfi			
Verhält	nis g : q	ψ1, Lagerr.	ψ2, Lagerr.	ψ2,Verkaufsr. + Versammlg.	ψ2, Büro+Wohn
			Lageii.	versammig.	Buiotwoiiii
g	q	0,9	0,8	0,6	0,3
1	0	0,741	0,741	0,741	0,741
0,93	0,07	0,730	0,725	0,715	0,700
0,9	0,1	0,725	0,718	0,703	0,681
0,8	0,2	0,710	0,696	0,667	0,623
0,75	0,25	0,703	0,685	0,649	0,595
0,7	0,3	0,695	0,674	0,631	0,566
0,667	0,333	0,690	0,667	0,619	0,548
0,6	0,4	0,681	0,652	0,596	0,511
0,5	0,5	0,667	0,632	0,561	0,456
					企
					i.d.R. relevant

Jetzt sind Sie gefragt

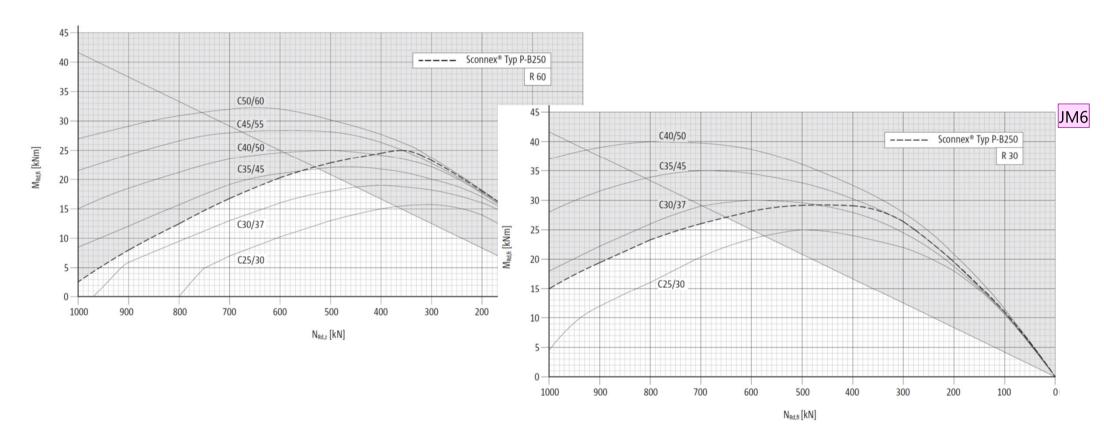
Nach welchem Verfahren weisen Sie den Brandschutz der Stützen nach?


Nachweis Brandschutz

Nachweisführung mit M-N-Interaktionsdiagrammen

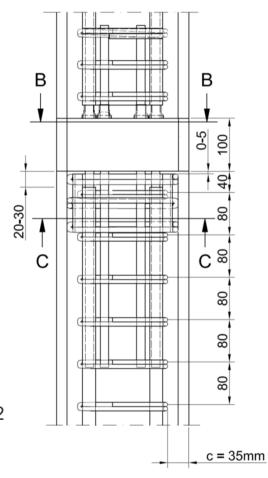
Nachweis der Stütze wie gewohnt

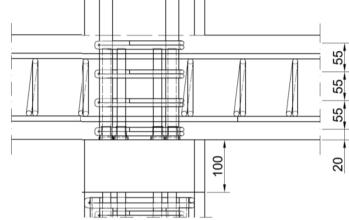
 Gleichung 5.7, Tabellenverfahren, FEM-Programm ...


- zusätzlich Nachweis Stützenkopf
 - Schnittgrößen M_{Ed,fi} und N_{Ed,fi} am ungestörten System ermitteln
 - Drei Querschnittsnachweise (grafisch)
 - Nachweis Sconnex[®] Typ P
 - Nachweis unbewehrter Ortbeton
 - Nachweis überdrückte Fuge (Einhaltung der Kernweite b/6)

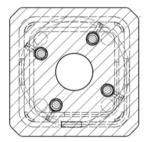
Nachweis Brandschutz

Nomogramme für R60 und R30





Konstruktionsdetails


Bewehrungsführung

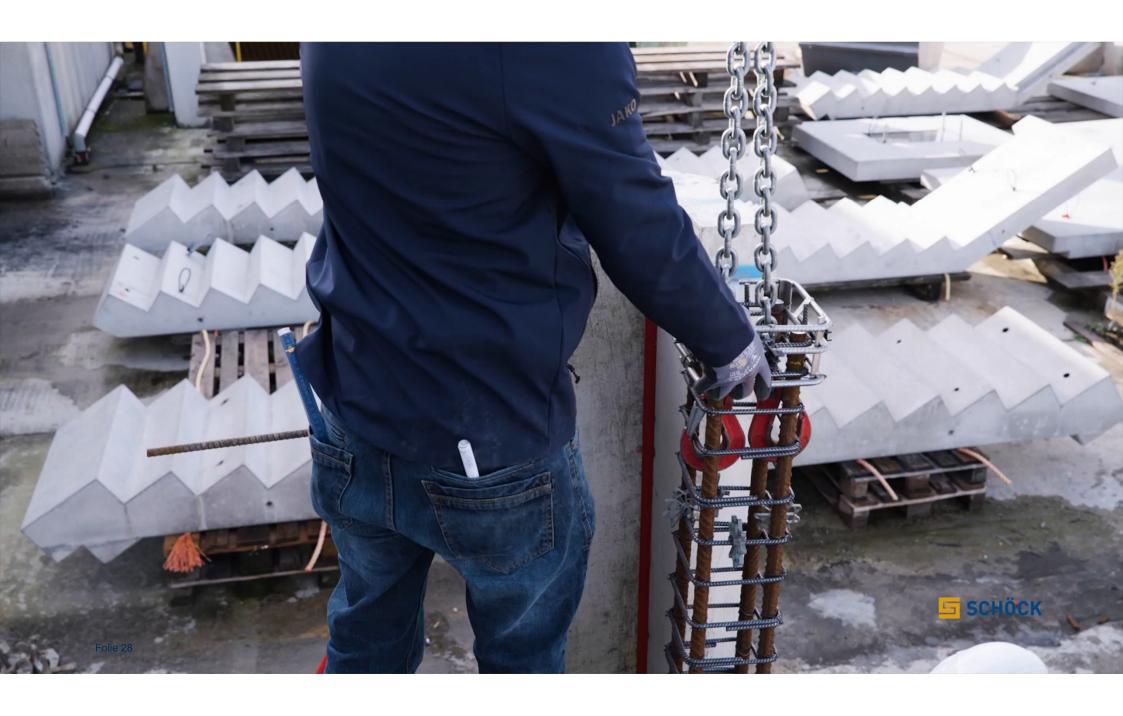
- Mindestbetondeckung 35 mm
- Zusatzverbügelung am Stützenkopf
 - unterhalb Part C:
 - min. 6 Bügel Ø8 80
 - Einbau Part T
 - oberhalb Part C:
 - min. 4 Bügel Ø8
- Auswirkung auf die statische Nutzhöhe
 - Bügelabmessung typ. 170/170
 - Achsabstand Längsbewehrung 48 mm + d/2

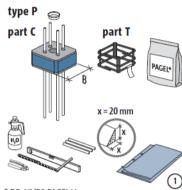
B-B (1:5)

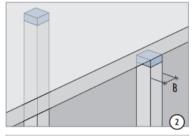
Einbausicherheit **SCHÖCK** © 2021 Folie 25

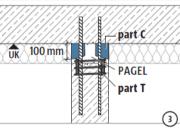
Einbausicherheit

Sconnex® Typ P

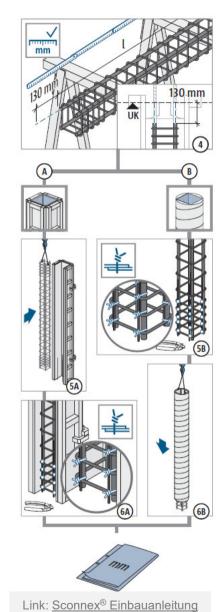

- Hinweise zu Einbau sind Bestandteil der Zulassung
- Einbaufilm
- Zertifizierung (Herstellervorgabe)
 - E-Learning mit Verständnistest
- QR-Code auf Produktlabel
 - Einbauanleitung
 - Montageprotokoll (Schöck App S-Construct)

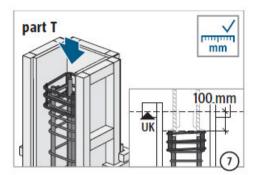

Link: Sconnex® Webseite Einbaufilm

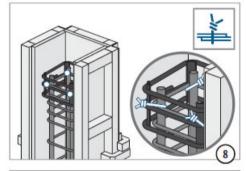

Sconnex® type P Einbauanleitung Ortbeton

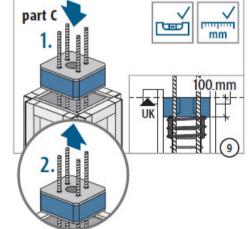


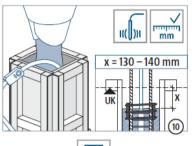
* DE: V1/50 PAGEL-Verguss

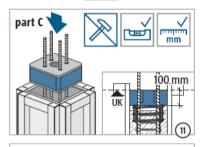


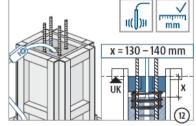

Montageprotokoll verwenden. Use installation protocol.

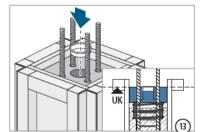


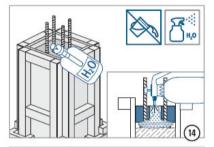


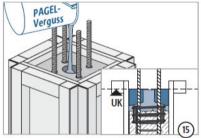

© 2021 Folie 29





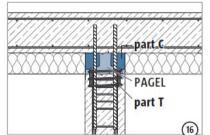






bei 20°C min. 24 h

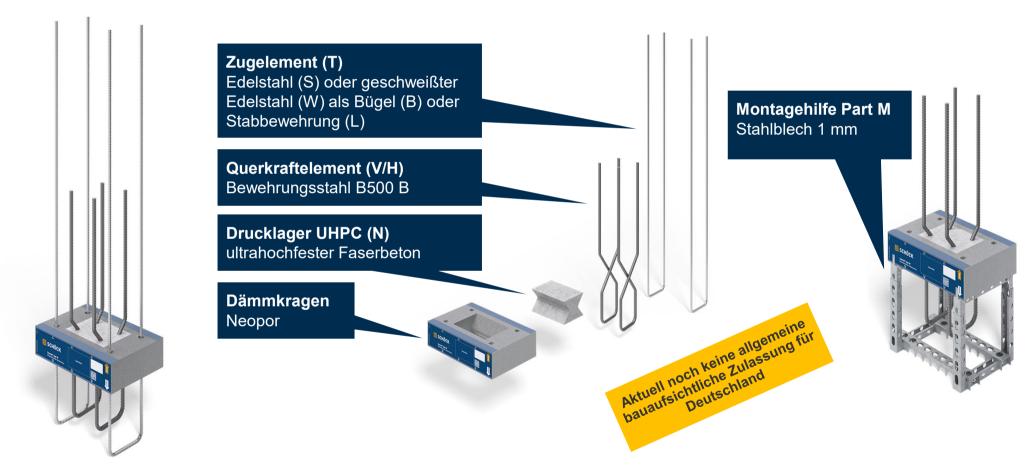
Temperatur (C°)	Wartezeit (h)
≥ 20	24
15	30
10	40
5	50



Verguss mit ca. 3 Liter V1/50 PAGEL

bei 20°C

min. 12 h



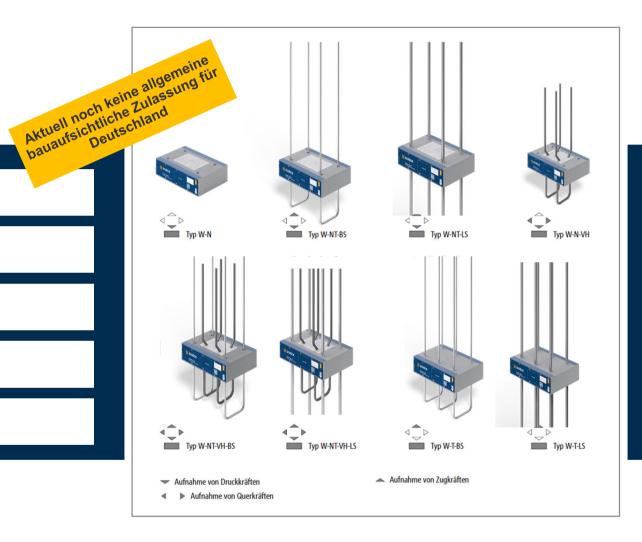
02

Wandanschluss Sconnex® Typ W

Schöck Sconnex® Typ W

Typenvarianten

Schöck Sconnex® Typ W

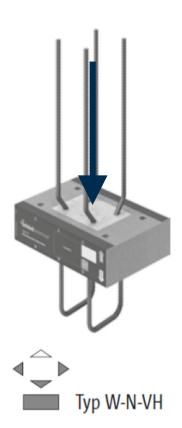

Druck: Typ W-N

Druck-Zug: Typ W-NT

Druck-Schub: Typ W-N-VH

Druck-Zug-Schub: Typ W-NT-VH

Zug: Typ W-T (ohne UHPC-Drucklager)


Druckkrafttragfähigkeit – N_{Rd,z}

Schöck Sconnex® Typ W

Leistungsmerkmal N - Aufnehmbare Normalkraft N_{Rd,z} (Druck)

Schöck Sconnex® Typ W		N1		
Bemessungswerte bei		Betonfestigkeitsklasse ≥ C25/30	Betonfestigkeitsklasse ≥ C30/37	
		Deckendicke ≥ 200 mm		
		N _{Rd,z,Wand} [kN/Element]		
	150	212,5	255,0	
Wanddicke [cm]	180	382,5	459,0	
	≥ 200	425,0	510,0	

- Basis österreichische Zulassung BTZ 0002 des OiB mit N_{Rd,z,max} = 760 kN
- Tabellenwerte nach EN 1992-1-1 §6.7 Teilflächenpressung
- Linienlasten bis zu 1700 kN/m
- Durchstanzen bei indirekter Lagerung nicht vergessen!

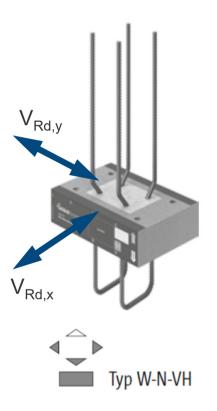
Zugkrafttragfähigkeit – N_{Rd,z}

Schöck Sconnex® Typ W

Leistungsmerkmal T – Aufnehmbare Normalkraft N_{Rd,z} (Zug)

Schöck Sconnex® Typ W		N1	N1T1	N1T2	T1	T2	
Domorrum armarta hai		Betonfestigkeitsklasse ≥ C25/30					
Bemessungswerte bei		N _{Rd,z} [kN/Element]					
Zuastäha Farmuarianta	В	-	-122,4	-267,7	-183,6	-401,6	
Zugstäbe, Formvariante	L	-	-267,7	-	-401,6	-	

- Stoßlänge mit α_1 bis α_5 = 1.0 berücksichtigt
- ø8 und ø12 im Produktprogramm

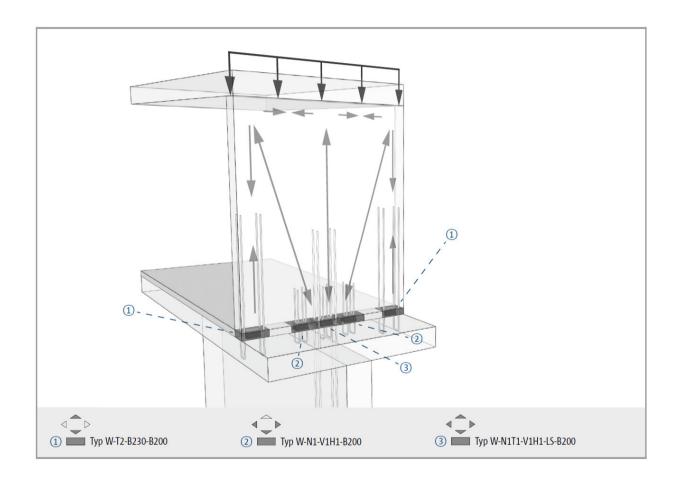


Schubkrafttragfähigkeit – V_{Rd,x} und V_{Rd,y}

Schöck Sconnex® Typ W

Nebentragstufe V1H1 - Aufnehmbare Querkräfte V_{Rd,x} und V_{Rd,y}

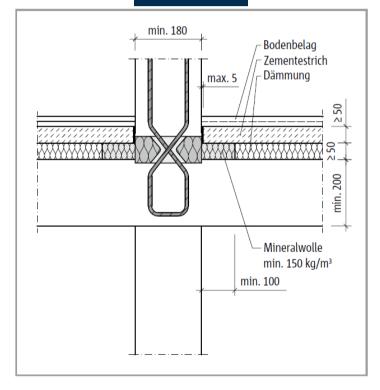
Schöck Sconnex® Typ W	Leistungsmerkmal N
Domossupasuosta hai	Nebentragstufe V1H1
Bemessungswerte bei	Betonfestigkeitsklasse ≥ C25/30
Querkraft	V _{Rd,x} [kN/Element]
Variante A – bauseitige Bewehrung außenliegend	±88,0
Variante B – bauseitige Bewehrung innenliegend	±46,3
Querkraft	V _{Rd,y} [kN/Element]
	±59,0
Interaktion	$V_{Ed,y}/V_{Rd,y} + V_{Ed,x}/V_{Rd,x} \le 1$



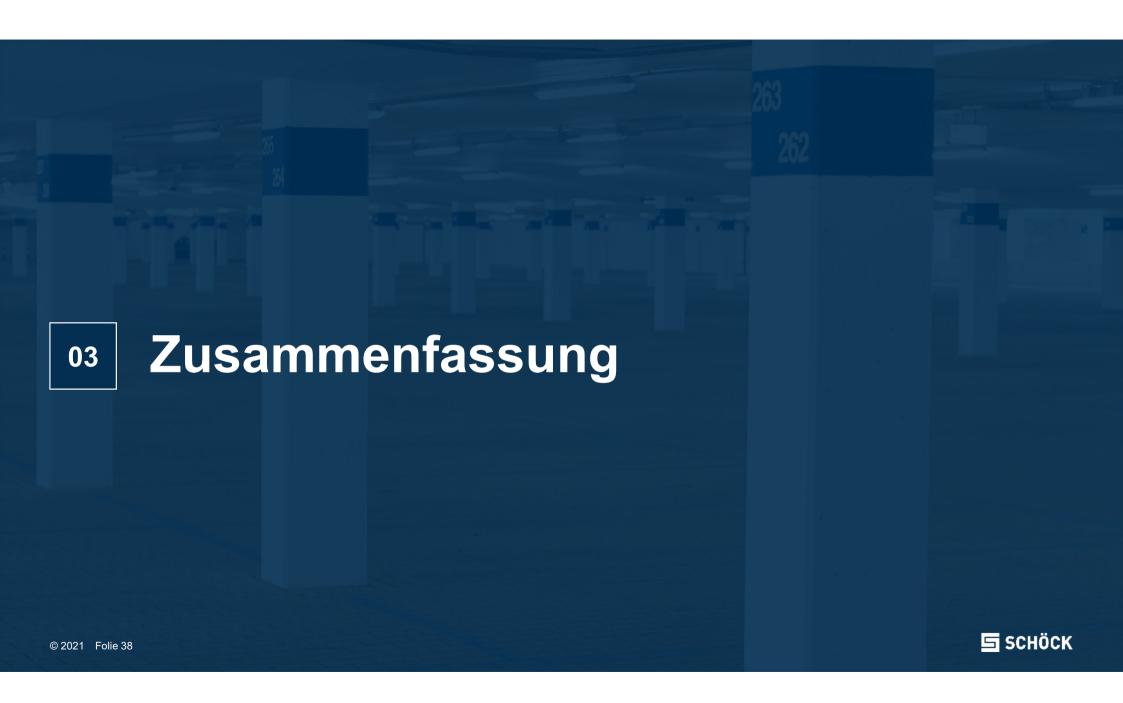
Lastfluss und Elementanordnung in Kreuzungsbereichen von Wänden

Schöck Sconnex® Typ W

- Stück- an Stückverlegung für höchste Kraftübertragung
- Berücksichtigung der auflagernahe Lasten bei Querkraftnachweisen der Decke
- Erforderliche Aufhängungen können mit den Zuganschlüssen übertragen werden



Brandschutz


durch Wahl der Konstruktion

- Brandschutz durch externe Maßnahmen (z.B. Mineralwolle)
- Gutachterliche Stellungnahmen für die 2 brandtechnisch relevanten tragenden Komponenten
 - Leistungsmerkmal N (Betondrucklager)
 - Leistungsmerkmal T (Zugstäbe aus Edelstahl)
- Optimierung auf Anforderung möglich
- Bei einer Nutzung von W-NT Elementen sind beide Gutachten einzuhalten.

R120 / REI120

Wichtiges auf einen Blick

Sconnex® Typ P

Sconnex® Typ W

Z-15.7-351 Stützengeometrie 250 x 250 mm

Wanddicken von 150 bis 300 mm

Kraftübertragung bis 1200 kN je Stütze Optimierte Kraftübertragung dank Druck-, Zug- und Schubelementen


Optimierte
Tragfähigkeitsbeurteilung
im Brandlastfall bis zu R90

Noch keine abZ in Deutschland vorhanden

Unsere Planungsunterstützung 04 **SCHÖCK** © 2021 Folie 40

Technische Information Sconnex®

Produktprospekt Sconnex®

Basisinformationen zur Produktfamilie

CAD / BIM Bibliotheken von Schöck

Typ P

Typ W

- 2D und 3D Modelle
- Einfügen als Download oder direktes Einfügen in CAD Systeme mit "Click2CAD"
- Modelle / Zeichnungen sind in 3 Detaillierungsgraden erhältlich
- Download von Datenpaketen (in kompletten Produktgruppen) möglich

Link: Schöck CAD-Service (schoeck.de)

Web-Seminar für Architekten

Schöck Sconnex®

"Die Lösung für die letzte große Wärmebrücke: Grundlagen zur Minimierung von Wärmebrücken an Wänden und Stützen"

Termine: Fr. 11.06. um 10 Uhr / Mi. 16.06. um 15 Uhr

Inhalte

- Dämmkonzept für Wände und Stützen
- Energetische, optische und wirtschaftliche Vorteile
- Wärme- und Feuchteschutz: Vorteile der Dämmung mit Sconnex®
- Besonderheiten der Ausführung von Unterdecken- und Aufdeckendämmung
- Anwendungsgebiete Planen mit Sconnex®
- Best Practice Sconnex[®] im Einsatz

Link: Web-Seminar-Anmeldung

Unsere Service-Leistungen

Auf der sicheren Seite mit bester Unterstützung

Beratung durch Anwendungstechnik

07223 967 567 awt-technik-de@schoeck.com

Beratung vor Ort

Produktingenieure:

https://www.schoeck.com/de/beratung-fuer-planer

Einbau-Begleitung und Zertifizierung von Verarbeitern

Einbaumeister:

https://www.schoeck.com/de/verarbeiterberatung

Gerne beantworten wir nun Ihre noch offenen Fragen.

Schön, dass Sie dabei waren.

Wir sagen Danke.

Moderatorin

Referent

Dipl.-Ing.

Martin Fenchel

Entwickler

Referent

Dipl.-Ing.
Rene Ziegler
Produktmanager

