

Zulassung ETA-17/0261 Schöck Isokorb® mit Betondruckelementen

Dämmkörperdicke 80 und 120 mm

September 2018

Deutsches Institut für Bautechnik Member of Example 1

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts Benannt

gemäß Artikel 29
der Verordnung (EU)
Nr. 305/2011 und Mitglied der EOTA (Europäische Organisation
für Technische
Bewertung)

Europäische Technische Bewertung

ETA-17/0261 vom 11. September 2017

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Deutsches Institut für Bautechnik

Schöck Isokorb® mit Betondruckelementen

Tragende wärmedämmende Elemente für die thermische Trennung von Bauteilen aus Stahlbeton

Schöck Bauteile GmbH Vimbucher Straße 2 76534 Baden-Baden (Steinbach) DEUTSCHLAND

Schöck Bauteile GmbH, Vimbucher Straße 2 76534 Baden-Baden, Germany

Schöck Bauteile GmbH, Nordsternstraße 61 45329 Essen, Germany Schöck Bauteile Ges.m.b.H., Handwerkstraße 2 4055 Pucking, Austria

Schöck Sp.Z o.o., ul. Turynska 80, 43-100 Tychy, Poland

37 Seiten, davon 4 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 050001-00-0301

Deutsches Institut für Bautechnik

Kolonnenstraße 30 B | D-10829 Berlin | Tel.: +49 30 78730-0 | Fax: +49 30 78730-320 | E-Mail: dibt@dibt.de | www.dibt.de

Z79409.15

Europäische Technische Bewertung ETA-17/0261

Seite 2 von 37 | 11. September 2017

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z79409.15 8.03.01-122/13

Europäische Technische Bewertung ETA-17/0261

Seite 3 von 37 | 11. September 2017

Besonderer Teil

1 Technische Beschreibung des Produkts

Der Schöck Isokorb[®] mit Betondruckelementen ist ein tragendes wärmedämmendes Verbindungselement zum Anschluss für bewehrte Platten aus Normalbeton.

Die Produktbeschreibung ist in Anhang A angegeben.

Die in den Anhängen A1 bis A5 nicht angegebenen Werkstoffkennwerte, Abmessungen und Toleranzen des Verbindungselementes müssen den in der technischen Dokumentation^[1] dieser Europäischen Technischen Bewertung festgelegten Angaben entsprechen.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Schöck Isokorb® mit Betondruckelementen entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Schöck Isokorb® von mindestens 50 Jahren. Die Angabe zur Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Bemessungswerte des Widerstandes gegen Zug- und Druckbeanspruchung	Siehe Anhang C1 bis C3

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten der Baustoffe	Siehe Anhang A5
Feuerwiderstand	Siehe Anhang C4 bis C6

3.3 Schallschutz (BWR 5)

Die Leistung wurde nicht bewertet.

3.4 Energieeinsparung und Wärmeschutz (BWR 6)

Wesentliches Merkmal	Leistung
Wärmedurchlasswiderstand	Siehe Anhang C8 bis C9

[1]

Die technische Dokumentation dieser europäisch technischen Bewertung ist beim Deutschen Institut für Bautechnik hinterlegt und soweit diese für die Aufgaben der in das Verfahren der Konformitätsbescheinigung eingeschalteten zugelassenen Stellen bedeutsam ist, den zugelassenen Stellen auszuhändigen.

Z79409.15

- EN 206-1:2000

Europäische Technische Bewertung ETA-17/0261

Seite 4 von 37 | 11. September 2017

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß Entscheidung der Kommission vom 14. Juli 1997 (97/597/EC) gilt das System 1+ zur Bewertung und Überprüfung der Leistungsbeständigkeit.

5 Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Beton - Teil 1: Festlegung, Eigenschaften, Herstellung

Folgende Normen werden in dieser europäisch technischen Bewertung in Bezug genommen:

	200 1.2000	Konformität
-	EN 1992-1-1:2004 + AC:2010	Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 1-1: Allgemeine Bemessungsregeln
Η	EN 1993-1-1:2005 + AC:2009	und Regeln für den Hochbau Eurocode 3: Bemessung und Konstruktion von Stahl- bauten - Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau
	EN 1993-1-4:2006 + A1:201	Eurocode 3: Bemessung und Konstruktion von Stahlbauten - Teil 1-4: Allgemeine Bemessungsregeln - Ergänzende Regeln zur Anwendung von nichtrostenden Stählen
-	EN 10088-1:201	Nichtrostende Stähle - Teil 1: Verzeichnis der nichtrostenden Stähle
-	EN 12664:2001	Wärmetechnisches Verhalten von Baustoffen und Bauprodukten - Bestimmung des Wärmedurchlasswiderstandes nach dem Verfahren mit dem Plattengerät und dem Wärmestrommessplatten-Gerät - Trockene und feuchte Produkte mit mittlerem und niedrigem Wärmedurchlasswiderstand
-	EN 13163:2012+A2:2016	Wärmedämmstoffe für Gebäude - Werkmäßig hergestellte Produkte aus expandiertem Polystyrol (EPS) - Spezifikation
-	EN 13245-1:2010	Kunststoffe - Profile aus weichmacherfreiem Polyvinylchlorid (PVC-U) für die Anwendung im Bauwesen - Teil 1: Bezeichnung von Profilen aus PVC-U
-	EN 13245-2:2008 + AC:2009	Kunststoffe - Profile aus weichmacherfreiem Polyvinylchlorid (PVC-U) für die Anwendung im Bauwesen - Teil 2: Profile aus PVC-U und Profile aus PVC-UE für Wand- und Deckenbekleidungen für Innen- und Außenanwendungen
-	EN 13501-1:2007+A1:2009	Klassifizierung von Bauprodukten und Bauarten zu ihrem Brandverhalten - Teil 1: Klassifizierung mit den Ergebnissen aus den Prüfungen zum Brandverhalten von Bauprodukten
~	EN ISO 6946:2007	Bauteile - Wärmedurchlasswiderstand und Wärmedurchgangs- koeffizient - Berechnungsverfahren (ISO 6946:2007)
н	EN ISO 10211:2007	Wärmebrücken im Hochbau - Wärmeströme und Oberflächentemperaturen - Detaillierte Berechnungen (ISO 10211:2007)

Z79409.15 8.03.01-122/13

Europäische Technische Bewertung ETA-17/0261

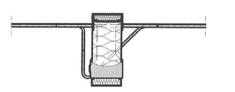
Seite 5 von 37 | 11. September 2017

- EN ISO 10456:2007	Baustoffe und Bauprodukte - Wärme- und feuchtetechnische Eigenschaften - Tabellierte Bemessungswerte und Verfahren zur Bestimmung der wärmeschutztechnischen Nenn- und Bemessungswerte (ISO 10456:2007 + Cor. 1:2009)
- EN ISO 17660-1:2006	Schweißen - Schweißen von Betonstahl - Teil 1: Tragende Schweißverbindungen (ISO 17660-1:2006)
- EN ISO 17855-1:2014	Kunststoffe - Polyethylen (PE)-Formmassen - Teil 1: Bezeichnungssystem und Basis für Spezifikationen (ISO 17855-1:2014)
- EN ISO 17855-2:2016	Kunststoffe - Polyethylen (PE)-Formmassen - Teil 2: Herstellung von Probekörpern und Bestimmung von Eigenschaften (ISO 17855-2:2016)

Ausgestellt in Berlin am 11. September 2017 vom Deutschen Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Abteilungsleiter

Z79409.15 8.03.01-122/13


Seite 6 der Europäischen Technischen Bewertung ETA-17/0261 vom 11. September 2017

A.1 Typenübersicht

- Typ K/KF (Variante mehrteilig):

Zug- und Druckelemente zur Aufnahme von Biegemomenten, sowie in der Dämmschicht geneigte Stäbe zur Aufnahme von Querkräften

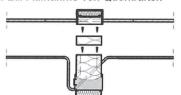


Abb. 1 Schöck Isokorb® Typ K

Abb. 2 Schöck Isokorb[®] Typ KF (Variante mehrteilig)

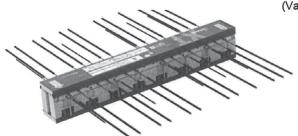


Abb. 3 Schöck Isokorb® Typ K

- Typ Q:

in der Dämmschicht geneigte Stäbe sowie Druckelemente ausschließlich zur Aufnahme von Querkräften

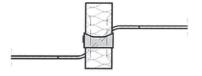


Abb. 4 Schöck Isokorb[®] Typ Q

- Typ K (Variante Höhenversatz):

Zug- und Druckelemente zur Aufnahme von Biegemomenten, sowie in der Dämmschicht geneigte Stäbe zur Aufnahme von Querkräften zum Anschluss an höhenversetzte plattenartige Bauteile aus Stahlbeton

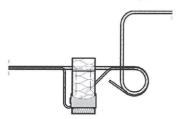


Abb. 5 Schöck Isokorb® Typ K (Variante Höhenversatz)

Varianten der Drucklager (CCE) (Anhang A2): HTE Modul, HTE30 oder HTE20

Schöck Isokorb® mit Betondruckelementen	
Produktbeschreibung Typenübersicht	Anhang A1

Z29355.17

Seite 7 der Europäischen Technischen Bewertung ETA-17/0261 vom 11. September 2017

Betondrucklager HTE Modul und HTE30

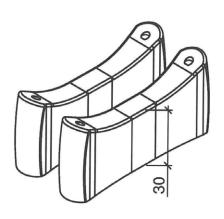


Abb. 6 Dämmstoffstärke 80 mm

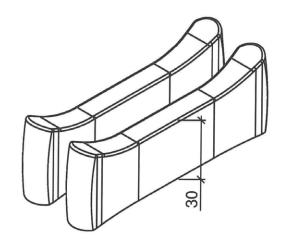


Abb. 7 Dämmstoffstärke 120 mm

Betondrucklager HTE20

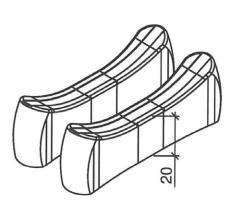


Abb. 8 Dämmstoffstärke 80 mm

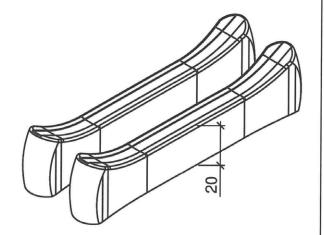


Abb. 9 Dämmstoffstärke 120 mm

Schöck Isokorb® mit Betondruckelementen	
Produktbeschreibung	Anhang A2
Typenübersicht	
Betondrucklager Varianten (CCF), Dämmstoffstärke 80 - 120 mm	

Z29355.17

Seite 8 der Europäischen Technischen Bewertung ETA-17/0261 vom 11. September 2017

A.2 Abmessungen und Lage der Stäbe und Druckelemente im Bereich der Dämmfuge

Die Zug-, und Querkraftstäbe bestehen in der Dämmfuge (80 mm oder 120 mm) und auf einer Länge von mindestens 10 cm innerhalb der angrenzenden Betonbauteile aus nichtrostendem Betonstahl oder nichtrostenden Rundstahlstäben, an deren Enden Betonstahl angeschweißt wird.

Zugstäbe:

- Durchmesser: Ø ≤ 20 mm

Abgestufte Nenndurchmesser nach

Anhang A4

Anzahl pro Meter: $n \ge 4/m$

- Achsabstand: ≤ 300 mm, im Mittel ≤ 250 mm

Querkraftstäbe:

Anzahl pro Meter: n ≥ 4/m

- Durchmesser:

Typ Q: Ø ≤ 14 mm

o Anordnung zwischen Einzelelementen der Drucklagerpaare (Typ K, KF) :

 $\emptyset \leq 8 \text{ mm}$

- Neigung in Dämmschicht: in der Regel α = 45° bei 80 mm Dämm-

stoffstärke, α = 35° bei 120 mm Dämm-

stoffstärke

- Achsabstand der Stäbe: ≤ 300 mm, im Mittel ≤ 250 mm

- Im betonfreien Bereich: Stäbe dürfen keine Krümmung aufweisen

- Biegerollendurchmesser im Bereich des Druckelements:

Gemäß den Anhängen B5, D5, D7, D8 und unter Beachtung der Regeln nach

EN 1992-1-1

- Anfangspunkt der Innenkrümmung: ≥ 2·Ø von freier Betonfläche, in Stabrichtung

gemessen

Drucklager (CCE):

- Anzahl pro Meter: n ≥ 4/m - Lichter Abstand: ≤ 250 mm

- Mindestanzahl je anzuschließendes Bauteil:

n ≥ 4

Schöck Isokorb® mit Betondruckelementen	
Produktbeschreibung Abmessungen	Anhang A3

Seite 9 der Europäischen Technischen Bewertung ETA-17/0261 vom 11. September 2017

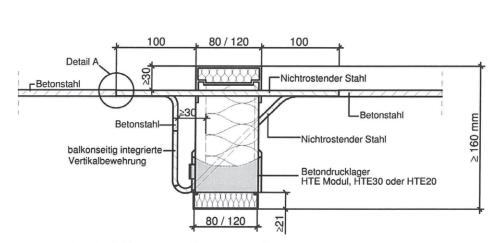


Abb. 10 Schöck Isokorb® Typ K mit CCE

abgestufte Zugstäbe	Betonstahl	Nichtrostender Stahl	
φ1 - φ2 - φ1	φ ₁ (mm) R _{p0,2} (N/mm²)	φ ₂ (mm) R _{p0,2} (N/mm²)	∆ l ₀ (mm)
8 - 6,5 - 8	8 500	6,5 800	20
8 - 7 - 8	8 500	7 700	13
10 - 8 - 10	10 500	8 700 / (820 optional)	20
12 - 9,5 - 12	12 500	9,5 820	20
12 - 10 - 12	12 500	10 700	17
12 - 11 - 12	12 500	11 700	9
14 - 12 - 14	14 500	12 700	14

Abb. 11 Durchmesserkombinationen und Zuschläge zur Übergreifungslänge

Spezifizierung der Werkstoffe siehe Abschnitt A.3

Schöck Isokorb® mit Betondruckelementen	
Produktbeschreibung Abmessungen	Anhang A4

Z29355.17

Seite 10 der Europäischen Technischen Bewertung ETA-17/0261 vom 11. September 2017

A.3 Werkstoffe

Betonstahl:

B500B, Klasse A1 nach EN 13501-1

Nichtrostender Stahl:

B500 NR oder nichtrostender Rundstahl (S355, S460,

S690) mit Korrosionswiderstandsklasse III nach EN 1993-1-4, Klasse A1 nach EN 13501-1

Beton für das Drucklager:

Hochleistungsfeinbeton, Klasse A1 nach EN 13501-1

Dämmfuge:

Polystyrol-Hartschaum (EPS) nach EN 13163, Klasse E

nach EN 13501-1

Brandschutzmaterial:

Feuchtigkeitsabweisende, witterungsbeständige und UV-

resistente Ausführung, Klasse A1 nach EN 13501-1

Kunststoffschalung

PE-HD Kunststoff nach EN ISO 17855-1 und

HTE:

EN ISO 17855-2, Leistung wird nach EN 13501-1 nicht

bewertet

Im Brandfall auf-

schäumender Baustoff:

Halogenfreier, dreidimensional aufschäumender Baustoff auf Graphit Basis mit Aufschäumfaktor min. 14; Klasse E nach

FN 13501-

Kunststoffschienen:

PVC-U nach EN 13245-1 und EN 13245-2, Leistung wird

nach EN 13501-1 nicht bewertet

Schöck Isokorb® mit Betondruckelementen	
Produktbeschreibung Werkstoffe	Anhang A5

Z29355.17

Seite 11 der Europäischen Technischen Bewertung ETA-17/0261 vom 11. September 2017

B.1 Anwendungsbedingungen

- Statische oder quasi-statische Einwirkungen
- Mindestbetonfestigkeitsklasse der zu verbindenden Stahlbetonbauteile aus Normalbeton nach EN 206-1: C20/25, bei Außenbauteilen C25/30
- Zum Anschluss für 16 cm bis 50 cm dicke Platten aus Stahlbeton

B.1.1 Entwurf

Es gelten EN 1992-1-1 und EN 1993-1-1 und die Bestimmungen nach Anhang D.

- Angeschlossene Platte ist durch Dehnfugen zu unterteilen (Fugenanordnung entsprechend Abschnitt B.2.1).
- Statischer Nachweis für Weiterleitung der Kräfte aus den Zug- und Druckgliedern in die angeschlossenen Platten ist zu führen
- Abweichungen vom Dehnungszustand einer baugleichen Platte ohne Dämmfuge sind durch Einhaltung dieser europäisch technischen Bewertung auf den Fugenbereich sowie die anschließenden Ränder begrenzt
- Im Abstand h vom Fugenrand darf der ungestörte Dehnungszustand angenommen werden
- Veränderliche Momente und Querkräfte entlang angeschlossenem Rand sind zu berücksichtigen
- Beanspruchung der Plattenanschlüsse durch lokale Torsionsmomente sind auszuschließen
- Kleine Normalkräfte aus Zwang in den Gurtstäben (am Ende von Linienlagern, z.B. neben freien Rändern oder Dehnfugen) dürfen rechnerisch vernachlässigt werden, Zwangsnormalkräfte in Richtung der Stäbe der Plattenanschlüsse müssen ausgeschlossen werden (Beispiel siehe Anhang B2)
- Angeschlossene Bauteile: Verhältnis Höhe / Breite ≤ 1/3, wenn kein gesonderter Nachweis zur Aufnahme der auftretenden Querzugspannungen geführt wird

B.2 Einbaubestimmungen

B.2.1 Achs- und Fugenabstände

- Zug- und Druckglieder, Querkraftstäbe (Regelungen nach Abschnitt D.1.2.3):

$$5 \text{ cm} \le s_1 \le \frac{1}{2} s_{2,\text{max}}$$

mit:

s₁ Achsabstand vom freien Rand bzw. der Dehnungsfuge

s_{2,max} zulässiger Maximalabstand der Stäbe untereinander

- Außenliegende Betonbauteile: rechtwinklig zur Dämmschicht sind Dehnfugen anzuordnen (siehe Anhang B2)
- Fugenabstände: Tabelle B.1

Schöck Isokorb® mit Betondruckelementen	
Verwendungszweck Anwendungsbedingungen/ Einbaubestimmungen	Anhang B1

Seite 12 der Europäischen Technischen Bewertung Deutsches Institut ETA-17/0261 vom 11. September 2017 Bautechnik Außenbauteil max v_h max v_h Hauptbewegungsrichtung Verschiebungsruhepunkt S_{Fuge} Abb. 12 Einbausituation mit Lagerung zwischen gegenüberliegenden Rändern ≤ 1/2 S _{Fuge} ≤ S _{Fuge} ≤ 1/2 S _{Fuge} Dehnfuge Balkon Dehnfuge < 1/2 S Fuge Decke Abb. 13 Einbausituation mit Dehnfugen Schöck Isokorb® mit Betondruckelementen Anhang B2 Verwendungszweck Einbaubestimmungen Darstellung Einbausituation - Dämmstoffstärke 80 - 120mm Z29355.17 8.03.01-122/13

Seite 13 der Europäischen Technischen Bewertung ETA-17/0261 vom 11. September 2017

Deutsches
Institut
für
Bautechnik

Tabelle B.1: Zulässige Fugenabstände in [m]

Dicke der Dämmfuge			Stabdurc	hmesser i [mm]	in der Fug	e	
[mm]	≤9,5	10	11	12	14	16	20
80	13,5	13,0	12,2	11,7	10,1	9,2	8,0
120	23,0	21,7	20,6	19,8	17,0	15,5	13,5

B.2.2 Bauliche Durchbildung

Mindestbetondeckung nach EN 1992-1-1 für Zugstäbe, Querbewehrung und Montagebewehrung ist einzuhalten.

Bewehrung der an die Plattenanschlüsse anschließenden Betonkonstruktionen ist unter Berücksichtigung der erforderlichen Betondeckung nach EN 1992-1-1 bis an die Dämmschicht heranzuführen.

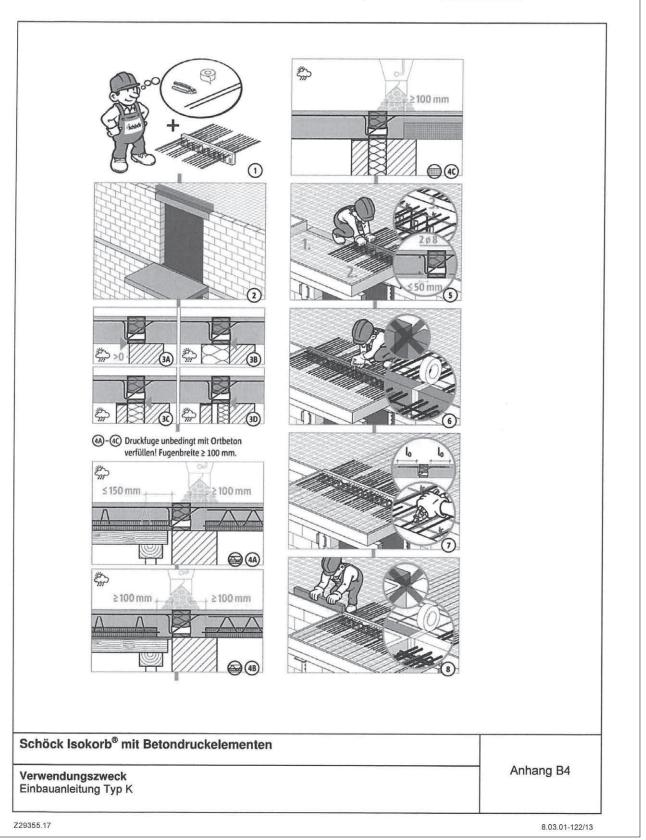
Querstäbe der oberen Anschlussbewehrung müssen in der Regel außen auf den Längsstäben der Plattenanschlüsse liegen. Abweichungen bei Stabdurchmessern \varnothing < 16 mm sind möglich, wenn folgende Bedingungen eingehalten werden:

- Einbau der Querstäbe direkt unter den Längsstäben ist möglich
- Einbau wird kontrolliert, z.B. durch Fachbauleiter
- Montageschritte müssen in Einbauanleitung beschrieben sein (siehe Anhang B4)

Stirnflächen der anzubindenden Bauteile müssen eine konstruktive Randeinfassung nach EN 1992-1-1, Abschnitt 9.3.1.4 erhalten, z.B. in Form von Steckbügeln mit mindestens $\varphi \geq 6$ mm, s ≤ 25 cm und je 2 Längsstäben, $\varphi \geq 8$ mm. Die vertikalen Schenkel der Querkraftstäbe bei den Isokorb® Typen K und KF (siehe Anhang B5 und B6) sowie Gitterträger mit einem maximalen Abstand von 100 mm zur Dämmfuge nach Anhang B7 Abb. 19 dürfen angerechnet werden.

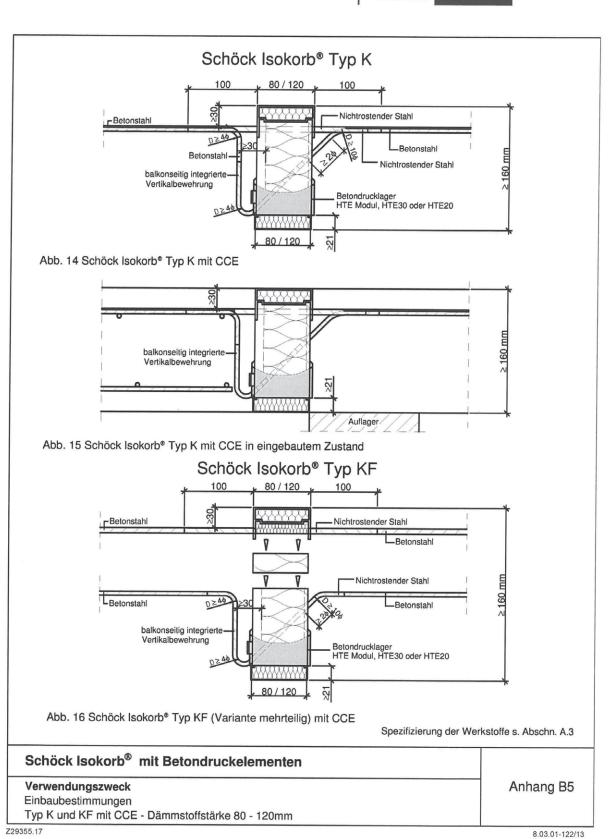
Bewehrung der Randeinfassung an den parallel zu den Plattenanschlüssen verlaufenden Bauteilseiten ist wie folgt auszubilden:

- Es werden Momente und Querkräfte übertragen:
 - o Zugstäbe sind zu übergreifen
- Es werden zusätzlich abhebende Querkräfte übertragen:
 - o Zug- und Druckstäbe sind zu übergreifen
- Es werden ausschließlich Querkräfte übertragen:
 - Die Zugbewehrung im Bereich des Plattenanschlusses darf nicht gestaffelt werden
 - Die Zugbewehrung an der Stirnseite der Platte ist mittels Haken in der Druckzone zu verankern
 - Alternativ: Steckbügel an jedem Querkraftstab anordnen


Das nachträgliche Abbiegen der Stäbe des Plattenanschlusses ist nicht zulässig.

Schöck Isokorb® mit Betondruckelementen	
Verwendungszweck Einbaubestimmungen	Anhang B3

Seite 14 der Europäischen Technischen Bewertung ETA-17/0261 vom 11. September 2017



Seite 15 der Europäischen Technischen Bewertung ETA-17/0261 vom 11. September 2017

Seite 16 der Europäischen Technischen Bewertung ETA-17/0261 vom 11. September 2017

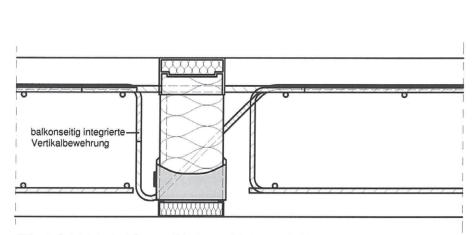


Abb. 17 Schöck Isokorb® gem. Abb. 14 mit CCE bei indirekter Lagerung

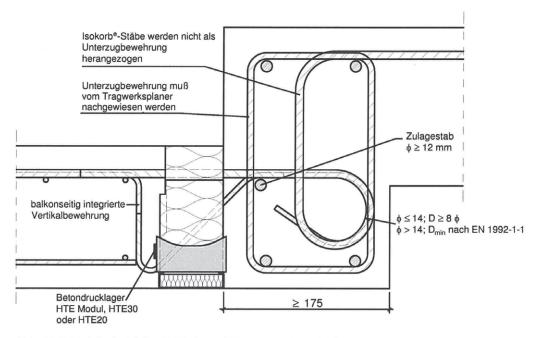


Abb. 18 Schöck Isokorb® Typ K (Variante Höhenversatz) mit CCE

Schöck Isokorb® mit Betondruckelementen		
Verwendungszweck	Anhang B6	
Einbaubestimmungen		
Typ K mit CCE bei indirekter Lagerung und Variante Höhenversatz - Dämmstoffstärke 80 - 120mm		

Z29355.17

Seite 17 der Europäischen Technischen Bewertung ETA-17/0261 vom 11. September 2017

Werden die an Plattenanschlüsse anschließenden Deckenplatten als Elementdeckenplatten ausgeführt, gelten folgende Bedingungen:

- Ortbetonstreifen gemäß Abb. 19 von mindestens 10 cm Breite zwischen Plattenanschluss und anzuschließender Elementdecke ausführen
- Betonzusammensetzung der Ortbetonfuge (Größtkorn der Gesteinskörnung d_g) ist auf diesen Abstand abzustimmen

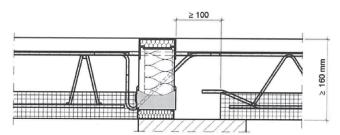


Abb. 19 Schöck Isokorb[®] Typ K mit CCE und Elementplatten

B.2.3 Hinweise zur Verwendung bei Anforderungen an den Brandschutz

Werden brandschutztechnische Anforderungen an die Elemente zur Verbindung von Stahlbetonbauteilen gestellt, sind die Bestimmungen von Abschnitt C.2 einzuhalten.

Schöck Isokorb® mit Betondruckelementen	
Verwendungszweck Einbaubestimmungen	Anhang B7

Z29355.17

Seite 18 der Europäischen Technischen Bewertung ETA-17/0261 vom 11. September 2017

C.1 Tragfähigkeit

C.1.1 Tragfähigkeit der verwendeten Stäbe

Tabelle C.1: Bemessungswerte bei Zugbeanspruchung für die verwendeten Stäbe

Stab aus	f _{yd} in N/mm²
B500B NR	435
Rundstahl S355	323
Rundstahl S460	418
Rundstahl S690	627
B500 NR R _{p0,2} 700	609 (für Zugstäbe)
B500 NR R _{p0,2} 800	661 (für Zugstäbe)
B500 NR R _{p0,2} 820	678 (für Zugstäbe)

Schöck Isokorb® mit Betondruckelementen	
Leistungsmerkmale Tragfähigkeit	Anhang C1

Seite 19 der Europäischen Technischen Bewertung ETA-17/0261 vom 11. September 2017

C.1.2 Bemessungswert der übertragbaren Druckkraft D_{Rd}

C.1.2.1 Allgemein

Der Bemessungswert der übertragbaren Druckkraft D_{Rd} berechnet sich in Abhängigkeit der Drucklagervariante:

$$\mathsf{D}_{\mathsf{Rd}} \text{=} \mathsf{min} \; \left\{ \begin{array}{l} \mathsf{n} \cdot \mathsf{D}_{\mathsf{Rd},\mathsf{c}} \\ \mathsf{n} \cdot \mathsf{D}_{\mathsf{Rd},\;\mathsf{CCE}} \end{array} \right.$$

mit: D_{Rd}

... Bemessungswert der übertragbaren Druckkraft in kN/m

n ... Vorh

Vorhandene Anzahl der Drucklagerpaare/m

D_{Rd,CCE} ...

Bemessungswert für die Betonkantentragfähigkeit in kN/ Lagerpaar Bemessungswert der Drucklagertragfähigkeit für ein Lagerpaar in kN

C.1.2.2 HTE Modul

 $D_{Rd,CCE} = 34,4 \text{ kN}$

Tabelle C.2: Bemessungswerte für HTE Modul (ersatzweise HTE30), s. Absch. 2.2.1.2

Mindestachsabstand	Betonfestigkeits-	D _{Rd,c} in
CCE,	klasse	kN/Lagerpaar
Drucklageranzahl/m		
5,0 cm	C20/25	25,5
11 – 18	C25/30	31,8
11 – 18	≥C30/37	34,4
5,5 cm	C20/25	26,6
11 – 16	C25/30	33,3
11 – 10	≥C30/37	34,4
6,0 cm	C20/25	27,8
11 – 14	C25/30	34,4
11-14	≥C30/37	34,4
10.0 cm	C20/25	34,4
4 – 10	C25/30	34,4
4 – 10	≥C30/37	34,4

Bei Anschlusssituationen wie in Anhang B6 Abb. 18 sind die Bemessungswerte nach Tabelle C.2 unter Berücksichtigung von $a_{c,uz}$ zu ermitteln und max. 16 Drucklager zu verwenden.

mit:

 $a_{c,uz}$... $a_{c,uz} = (b/220)^2 \le 1,0 \text{ für } 175 \le b < 220 \text{ mm}$

a_{c,uz} = 1,0 für b ≥ 220 mm b ... Unterzugsbreite in mm

Überschreitet der Bemessungswert der Druckkraft 350 kN/m, so sind auflagerseitig vier Sonderbügel pro Meter gleichmäßig nach Anhang D5 über die Länge des Anschlusses anzuordnen.

Schöck Isokorb® mit Betondruckelementen	
Leistungsmerkmale Tragfähigkeit	Anhang C2

Z29355.17

Seite 20 der Europäischen Technischen Bewertung ETA-17/0261 vom 11. September 2017

C.1.2.3 HTE30 und HTE20

$$\mathsf{D}_{\mathsf{Rd},\mathsf{c}} = \frac{1}{1000} \cdot \mathsf{a}_{\mathsf{cd}} \cdot \mathsf{a}_{\mathsf{c},\mathsf{uz}} \cdot \mathsf{c}_1 \cdot \mathsf{min} \left(\frac{\mathsf{a}}{2 \cdot \mathsf{c}_1 + 44 \; \mathsf{mm}} \right) \cdot \left(\mathsf{f}_{\mathsf{ck},\mathsf{cube}} \right)^{1/2}$$

mit:

a_{cd} ... siehe Tabelle C.3

c₁ ... Randabstand der Lastresultierenden in mm, gemäß Anhang D3

a ... Achsabstand der Drucklager in mm

 $f_{ck,cube}$ charakteristische Würfeldruckfestigkeit in N/mm² \leq C30/37

 $a_{c,uz}$... $a_{c,uz} = (b/220)^2 \le 1,0 \text{ für } 175 \le b < 220 \text{ mm}$

 $a_{c,uz} = 1,0$ für $b \ge 220$ mm $b \dots$ Unterzugsbreite in mm

Tabelle C.3: Bemessungswerte für HTE30 und HTE20

	Betondrucklager HTE20	Betondrucklager HTE30		
	ohne Sonderbügel	ohne Sonderbügel	mit Sonderbügel ^{*)}	
a _{cd}	1,70	1,80	2,23	
Mindestachsabstand DL	10,0 cm	10,0 cm	8,0 cm	
Drucklager-Anzahl/m	4 – 10	4 – 10	9 – 12	
D _{RD,CCE} [kN/Lagerpaar]	38,0	45,0	45,0	

^{*)} Auflagerseitige Anordnung von 4 Sonderbügeln nach Anhang D5 pro Meter gleichmäßig über die Länge des Anschlusses

Schöck Isokorb® mit Betondruckelementen	
Leistungsmerkmale Tragfähigkeit	Anhang C3

Seite 21 der Europäischen Technischen Bewertung ETA-17/0261 vom 11. September 2017

C.2 Feuerwiderstand

C.2.1 Leistungsmerkmale bezüglich Tragfähigkeit im Brandfall

Bei Einhaltung der im Anhang C1 bis C3 angegebenen Leistungsmerkmale für den Nachweis unter normalen Temperaturen ist für Anschlüsse mit Schöck-Isokorb[®] gemäß dem vorgesehenen Verwendungszweck auch die Tragfähigkeit im Brandfall für die in Tabelle C.5 angegebene Dauer gewährleistet.

Dies gilt für einen Reduktionsbeiwert $\eta_{\rm fl}$ gemäß EN 1992-1-2, Abschnitt 2.4.2 bis $\eta_{\rm fl}$ = 0,7, für Ausführungen gemäß der Abbildungen 20 bis 24 sowie unter Einhaltung folgender Randbedingungen.

- Die mit dem Schöck Isokorb[®] versehene Anschlussfuge ist an der Oberseite bzw.
 Ober- und Unterseite mit Brandschutzplatten gemäß Anhang A5 vollflächig zu bekleiden (siehe Anhang C5 und C6).
- Die Brandschutzplatten im Bereich von planmäßigen Zugbeanspruchungen sind entweder mit einem seitlichen Überstand von 10 mm gegenüber dem Dämmstoffkörper (Anhang C5, Abb. 21 und Anhang C6 Abb. 24) oder mit zusätzlichen Dämmstoffbildnern an beiden Seitenflächen (Anhang C5, Abb. 20 und Abb. 22 und Anhang C6, Abb. 23) auszuführen.
- Die erforderlichen Dicken t der Brandschutzplatten, die Mindestachsabstände u und v sowie die Mindestbetondeckung c der Betonstahlbewehrung sind Tabelle C.4 zu entnehmen.

Tabelle C.4: Mindestmaße c, u und v und erforderliche Dicke der Brandschutzplatten t in [mm]

30	
35	
Gemäß Datenblatt	
20/21	

⁾ siehe Anhang C5

Tabelle C.5:Feuerwiderstandsdauer (Tragfähigkeit)

(Tragianighen)
Feuerwiderstandsdauer
(Tragfähigkeit) in Minuten
120
120
120
60
60

Schöck Isokorb® mit Betondruckelementen	
Leistungsmerkmale Tragfähigkeit im Brandfall	Anhang C4

Seite 22 der Europäischen Technischen Bewertung ETA-17/0261 vom 11. September 2017

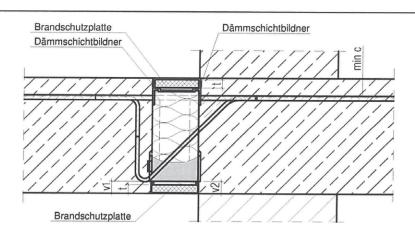


Abb. 20 Schöck Isokorb® Typ K und Typ KF mit CCE

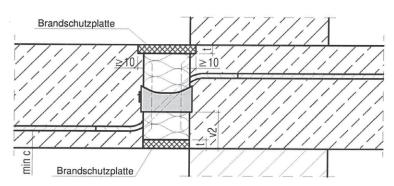


Abb. 21 Schöck Isokorb® Typ Q mit CCE

Abb. 22 Schöck Isokorb® Typ Q mit CCE

Schöck Isokorb® mit Betondruckelementen	
Leistungsmerkmale Tragfähigkeit im Brandfall	Anhang C5

Seite 23 der Europäischen Technischen Bewertung ETA-17/0261 vom 11. September 2017

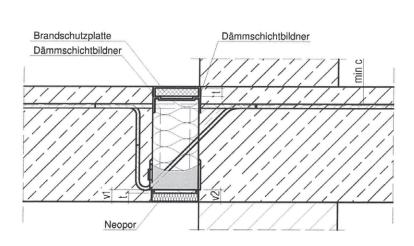


Abb. 23 Schöck Isokorb® Typ K und Typ KF mit CCE

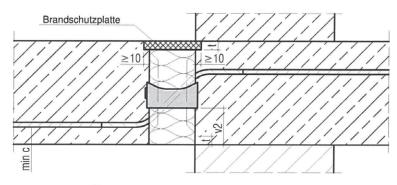


Abb. 24 Schöck Isokorb® Typ Q mit CCE

Schöck Isokorb [®] mit Betondruckelementen	
Leistungsmerkmale	Anhang C6
Tragfähigkeit im Brandfall	

Z29355.17

Seite 24 der Europäischen Technischen Bewertung ETA-17/0261 vom 11. September 2017

C.2.2 Feuerwiderstandsfähigkeit des Bauteils (informativ)

Decken- oder Dachkonstruktionen sowie Balkon- und Laubengangkonstruktionen, die gemäß dem vorgesehenen Verwendungszweck mit dem Schöck Isokorb[®] - wie in Anhang C5 und C6 dargestellt - an Stahlbetonbauteile angeschlossen werden, können hinsichtlich des Feuerwiderstandes gemäß EN 13501-2, wie in Tabelle C.6 angegeben, klassifiziert werden. Folgende Randbedingungen sind dabei zu beachten:

- Die Leistung hinsichtlich der Tragfähigkeit im Brandfall wurde für den Schöck Isokorb[®] erklärt.
- Siehe Anhang C4, Spiegelstrich 1 bis 3 sowie Tabelle C.4.
- Bei Decken- und Dachkonstruktionen sind die Anschlüsse der übrigen, nicht mit dem Schöck Isokorb[®] angeschlossenen Ränder der Decken- oder Dachkonstruktionen an anschließende oder unterstützende Bauteile gemäß den Bestimmungen der Mitgliedstaaten für den entsprechenden Feuerwiderstand nachzuweisen.

Tabelle C.6: Klassifizierung des Bauteils

Ausführungs- variante	Decken- oder Dachkonstruktion mit raumabschließender Funktion	Balkon- und Laubengang- konstruktion
Abb. 20	REI 120	R 120
Abb. 21	REI 120	R 120
Abb. 22	REI 120	R 120
Abb. 23	REI 60	R 60
Abb. 24	REI 60	R 60

Schöck Isokorb® mit Betondruckelementen	
Klassifizierung des Bauteils (informativ) Feuerwiderstandsfähigkeit	Anhang C7

Z29355.17

C.3 Wärmedurchlasswiderstand

Der äquivalente Wärmedurchlasswiderstand $R_{eq,TI}$ des Schöck Isokorb[®] wird nach EN ISO 6946 und EN ISO 10211 mittels Finite-Elemente-Methode und einem detaillierten 3D-Modell an der in Abbildung 25 dargestellten Konstruktion bestimmt:

$$R_{cal} = R_{eq,TI} + R_{con}$$

$$R_{eq,TI} = R_{cal} - R_{con} = R_{cal} - \frac{0.06 \, m}{2.3 \, W \, I \, (m*K)}$$

$$\lambda_{eq,TI} = \frac{d_{n,TI}}{R_{eq,TI}}$$

mit

R_{cal} berechneter Wärmedurchlasswiderstand für die Konstruktion in Abb. 25

R_{eq.TI} äquivalenter Wärmedurchlasswiderstand des tragenden Wärmedämmelementes

R_{con} Wärmedurchlasswiderstand der Betonstreifen

dn.Ti Nenndicke des tragenden Wärmedämmelementes

λ_{eq,TI} äquivalente Wärmeleitfähigkeit des tragenden Wärmedämmelementes

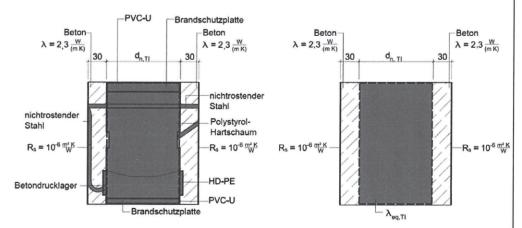


Abb. 25 Querschnitt der Konstruktion zur Bestimmung des äquivalenten Wärmedurchlasswiderstandes $R_{eq,Tl}$ sowie vereinfachtes Modell mit $\lambda_{eq,Tl}$

Die Bemessungswerte der Wärmeleitfähigkeit der Komponenten können der Tabelle C.7 entnommen werden.

Schöck Isokorb® mit Betondruckelementen	
Leistungsmerkmale Wärmedurchlasswiderstand	Anhang C8

Z29355.17

Seite 26 der Europäischen Technischen Bewertung ETA-17/0261 vom 11. September 2017

Tabelle C.7: Bemessungswerte der Wärmeleitfähigkeiten

Material	Bemessungswert der Wärmeleitfähigkeit λ [W/(m*K)]	Datengrundlage
Hochleistungsfeinbeton	Gemäß technischer Dokumentation	Gemäß EN 12664 und EN ISO 10456
Polystyrol-Hartschaum (EPS)	0,031	Gemäß EN 13163 und EN ISO 10456
Nichtrostender Stahl	13-15	Gemäß EN 10088-1
PE-HD	0,5	Gemäß EN ISO 10456
PVC-U	0,17	Gemäß EN ISO 10456
Brandschutzplatte	Gemäß technischer Dokumentation	Gemäß EN ISO 12664 und EN ISO 10456

Schöck Isokorb® mit Betondruckelementen	
Leistungsmerkmale Wärmedurchlasswiderstand	Anhang C9

Z29355.17

Seite 27 der Europäischen Technischen Bewertung ETA-17/0261 vom 11. September 2017

D.1 Bemessung

D.1.1 Allgemeines

- Bemessung nach EN 1992-1-1 und EN 1993-1-1 (im Bereich der D\u00e4mmschicht)
- Statischer Nachweis ist für jeden Einzelfall zu erbringen
- Typengeprüfte Bemessungstabellen dürfen verwendet werden

Ermittlung der Schnittgrößen:

- Nur durch linear-elastische Verfahren
- Verfahren mit Umlagerung der Schnittgrößen, der Plastizitätstheorie und nichtlineare Verfahren sind nicht anwendbar
- Grundsätze für die Bemessung von Stabwerken nach EN 1992-1-1, Abschnitt 5.6.4 sind anzuwenden
- Durch Fachwerkmodelle nach Anhang D3 mit $z = z_{Fachwerk}$
- Schnittgrößen Med und Ved in Bemessungsschnitt ansetzen
- Querkraftstäbe erhalten nur Zugkräfte
- veränderliche Momente und Querkräfte entlang des Plattenrandes berücksichtigen (siehe Abschnitt B.1.1)
- Die in der Dämmschicht erforderliche Querkraftbewehrung bestimmt nicht die Mindestplattendicke nach EN 1992-1-1, Abschnitt 9.3.2(1)

Bauseitige Vertikalbewehrung an den Stirnflächen, die den anzubindenden Bauteilen zugewandt sind:

 Die erforderliche Vertikalbewehrung ergibt sich aus Aufhänge- und Spaltzugbewehrung, wobei mindestens eine konstruktive Randeinfassung nach Abschnitt B.2.2 anzuordnen ist

$$V = max \begin{Bmatrix} R \\ A+S \end{Bmatrix}$$

mit: V

... bauseitige Vertikalbewehrung

R ... konstruktive Randeinfassung nach Abschnitt B.2.2

A ... Aufhängebewehrung S ... Spaltzugbewehrung

A – Aufhängebewehrung

Balkonseitig ist eine Aufhängebewehrung anzuordnen, wenn die Drucklager in höherer Anzahl als die Querkraftstäbe vorhanden sind. Die erforderliche Aufhängebewehrung ist über die gesamte Höhe bis in den Zuggurt des angeschlossenen Bauteils zu führen.

$$A = \frac{V_{Ed}}{f_{yd}} \cdot \left(1 \text{-} \frac{n_{Q\text{-}Stab}}{n_{CE}}\right) \text{mit} \, \frac{n_{Q\text{-}Stab}}{n_{CE}} \, \leq 1$$

mit:

 $\begin{array}{lll} A & \dots & \text{erforderliche Aufhängebewehrung} \\ n_{Q\text{-Stab}} & \dots & \text{Anzahl der Querkraftstäbe} \\ n_{\text{CE}} & \dots & \text{Anzahl der Drucklager} \\ \end{array}$

V_{Ed} ... gesamte einwirkende Querkraft

Schöck Isokorb® mit Betondruckelementen	
Bemessung Allgemeines	Anhang D1

Seite 28 der Europäischen Technischen Bewertung ETA-17/0261 vom 11. September 2017

S - Spaltzugbewehrung

o Balkonseite:

$$Z_{Sd} = 0.25 \cdot D_{Ed} \left(1 - \frac{a}{2 \cdot c_1} \right)$$

$$S_B = \frac{Z_{Sd}}{f_{yd}}$$

mit:

resultierende Spaltzugkraft Z_{sd}

 D_{Ed} rechtwinklig und mittig auf die Teilfläche einwirkende

Druckkraft nach Anhang D3

Seitenlänge der Teilfläche, auf welche Ded wirkt

20 mm für HTE20

30 mm für HTE30 und HTE Modul

Randabstand der Lastresultierenden (Anhang D3) C₁ S_B Balkonseitig erforderliche Spaltzugbewehrung

Deckenseite:

$$S_{D} = \begin{cases} 0 \text{ für direkte Lagerung} \\ S_{B} \text{ für indirekte Lagerung} \end{cases}$$

mit: S_D

Deckenseitig erforderliche Spaltzugbewehrung

- Bei nach oben gerichteten (abhebenden) Querkräften oder für obenliegenden Druckgurt und unten liegenden Zuggurt sind die Angaben für die bauseitige Vertikalbewehrung sinngemäß für den entgegengesetzten Lastabtrag umzustellen
- Anrechenbare Vertikalbewehrung:
 - konstruktive Randeinfassung nach Abschnitt B.2.2
 - Gitterträger mit einem maximalen Abstand von 100 mm ab Dämmfuge

 - Sonderbügel (nur auf Spaltzugbewehrung anrechenbar) vertikale Schenkel der Querkraftstäbe bei den Isokorb® Typen K und KF, wenn Achsabstand zwischen Querkraftstäben der und bauseitiger Anschlussbewehrung ≤ 2 cm

Schöck Isokorb® mit Betondruckelementen	
Bemessung Allgemeines	Anhang D2

Z29355.17

Seite 29 der Europäischen Technischen Bewertung ETA-17/0261 vom 11. September 2017 Deutsches Institut Bautechnik Bezugsachse für Schnittgrößenermittlung $c_1 \ge 38$ mm HTE Modul, HTE30 $c_1 \ge 33$ mm HTE20 Auflager Abb. 26 Schöck Isokorb® Typ K und KF (Variante mehrteilig) Z Bezugsachse für Schnittgrößenermittlung Abb. 27 Schöck Isokorb® Typ K (Variante Höhenversatz) Auflager Abb. 28 Schöck Isokorb® Typ Q Bezugsachse für Schnittgrößenermittlung Schöck Isokorb® mit Betondruckelementen Bemessung Anhang D3 Fachwerkmodelle, Dämmstoffstärke 80 - 120 mm Z29355.17 8.03.01-122/13

Seite 30 der Europäischen Technischen Bewertung ETA-17/0261 vom 11. September 2017

D.1.2 Nachweise im Grenzzustand der Tragfähigkeit

- D.1.2.1 Nachweis der Druckglieder
- D.1.2.1.1 Betondrucklager HTE Modul
 - Bemessungswert D_{Rd} nach Abschnitt C.1.2.1 unter Beachtung von Abschnitt C.1.2.2
 - Bemessungswert gilt auf der sicheren Seite liegend auch für Betondrucklager HTE30
- D.1.2.1.2 Betondrucklager HTE30 und HTE20
 - Bemessungswert für die Drucklagerkraft nach Abschnitt C.1.2.1 unter Beachtung von Abschnitt C.1.2.3
- D.1.2.2 Nachweis der Zugstäbe und Querkraftstäbe
 - Nachweis nach EN 1993-1-4 mit Bemessungswerten nach Tabelle C.1
 - Nachweis der Schweißverbindung zwischen Betonstahl und nichtrostendem Betonstahl bzw. Rundstahl nicht erforderlich
- D.1.2.3 Querkrafttragfähigkeit im Bereich der Dämmfuge
 - Querkrafttragfähigkeit der anschließenden Deckenplatte nach EN 1992-1-1, Abschnitt 6.2
 - Nachweis des erforderlichen Biegerollendurchmessers kann bei Einhaltung der beiden folgenden Bedingungen entfallen:
 - o Biegerollendurchmesser gemäß den Anhängen B5, D5, D7 und D8
 - Achsabstand der Querkraftstäbe im Mittel und zum freien Rand bzw. zur Dehnungsfuge ≥ 10 cm (siehe Abschnitt A.2).
 - Achsabstand < 10 cm: Nachweis des erforderlichen Biegerollendurchmesser ist nach EN 1992-1-1, Abschnitt 8.3 zu führen
- D.1.2.4 Nachweis der Ermüdung infolge Temperaturdifferenz
 - Nachweis durch Begrenzung der Fugenabstände nach Tabelle B.1

Schöck Isokorb® mit Betondruckelementen	
Bemessung Nachweise im Grenzzustand der Tragfähigkeit	Anhang D4

Seite 31 der Europäischen Technischen Bewertung ETA-17/0261 vom 11. September 2017

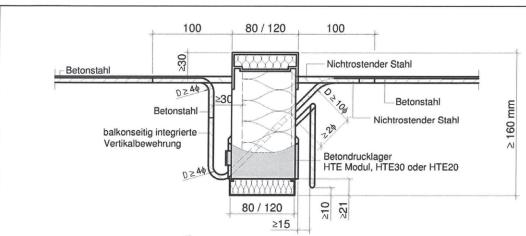
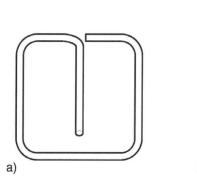



Abb. 29 Schöck Isokorb Typ K¹⁾ mit integrierter Vertikalbewehrung gem. Abschn. D.1.1 und Sonderbügel

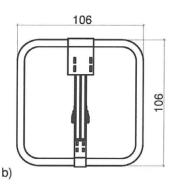
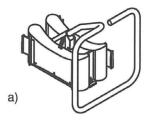



Abb. 30 Sonderbügel nichtrostender Stahl

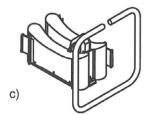


Abb. 31 Betondrucklager mit Sonderbügel

1) Spezifizierung der Werkstoffe s. Abschn. A.3

Schöck Isokorb® mit Betondruckelementen	
Bemessung	Anhang D5
Typ K - Varianten Sonderbügelhalterung Dämmstoffstärke 80 - 120 mm	

Z29355.17

Seite 32 der Europäischen Technischen Bewertung ETA-17/0261 vom 11. September 2017

- D.1.2.5 Festlegungen für die Nachweise im Krafteinleitungsbereich der Betonbauteile
 - Querkrafttragfähigkeit der ungestörten Platten nach EN 1992-1-1, Abschnitt 6.2
 - Für Bemessungswert der Querkrafttragfähigkeit der Platten ohne Querkraftbewehrung wird eine gleichmäßig über die Betondruckzone verteilte Querkraft zugrunde gelegt, daher sind die Elemente mit gleichmäßigem Abstand einzubauen
- D.1.2.6 Verankerungslängen und Übergreifungsstöße der durch die Wärmdämmschicht führenden Stäbe
 - Zur Verankerung und Übergreifung nur die gerippten Stababschnitte heranziehen
 - Zugstäbe sind mit Zugstäben der angrenzenden Platten zu stoßen
 - Bei Verwendung von abgestuften Zugstäben (siehe Anhang A4) ist der Zuschlag der Übergreifungslänge ΔI₀ nach Anhang A4 Abb. 11 zu berücksichtigen
 - Verankerung der Querkraftstäbe gemäß Anhang D7, sofern sich nicht nach EN 1992-1-1, Gleichung (8.10) höhere Werte ergeben
 - Werden Querkraftstäbe und Druckglieder nicht in einer Ebene verlegt,
 Verankerungslänge für Querkraftstäbe in der Druckzone wie in der Zugzone bestimmen

Zur Aufnahme der entstehenden Querzugkräfte ist zusätzlich zur Querbewehrung gemäß EN 1992-1-1 Abschnitt 8.4.1 im Übergreifungsbereich der Stäbe bei einem Achsabstand > 20 mm eine Querbewehrung gemäß EN 1992-1-1, Abschnitt 8.7.4 anzuordnen und am Querschnittsrand zu verankern.

Im Bereich der Schöck-Isokörbe® ist eine Staffelung der Zugbewehrung nicht zulässig.

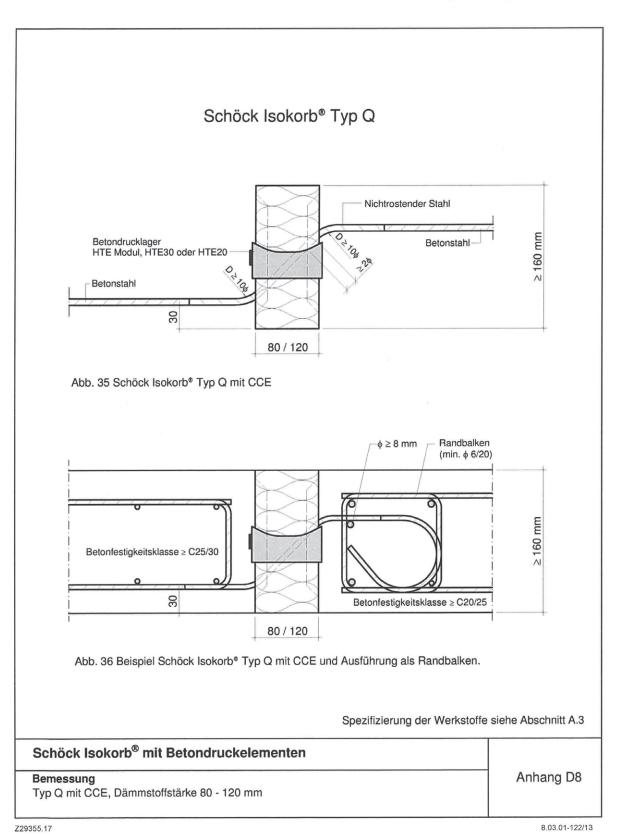
Plattenanschlüsse übertragen ausschließlich Querkraft:

- Zugbewehrung der anzuschließenden Platte ist an der Stirnseite mittels Haken in der Druckzone zu verankern
- Alternative: Steckbügel an jedem Querkraftstab oder Gitterträger, bei Verwendung von Gitterträgern muss die Zugbewehrung über den Gitterträgeruntergurten liegen (siehe auch Abschnitt B.2.2).
- Ausführung des Querkraftstabes in abgebogener Form möglich, mit angegebenen Konstruktionsdetails nach Anhang D8

Schöck Isokorb® mit Betondruckelementen		
Bemessung Nachweise im Grenzzustand der Tragfähigkeit	Anhang D6	

Z29355.17

Dämmstoffstärke 80 - 120 mm


Z29355.17

Seite 33 der Europäischen Technischen Bewertung ETA-17/0261 vom 11. September 2017 Deutsches Institut für Bautechnik ≥ 1,3 x I_{bd} ≥ I_{bd} ≥30 \geq 1,3 x I _{bd} D ≥10 ¢ Abb. 32 Schöck Isokorb® Typ K / KF (Variante mehrteilig) \geq 0,7 x I_{bd} ≥ I_{bd} ≥ 30 ≥ 1,3 x l_{bd} D ≥10 ¢ Abb. 33 Schöck Isokorb[®] Typ K (Variante Höhenversatz) ≥ 155 ≥ 30 D ≥10 φ D ≥10 ¢ \geq 1,3 x I _{bd} ≥30 Abb. 34 Schöck Isokorb® Typ Q mit $I_{bd} \ge I_b$, min nach EN 1992-1-1 Schöck Isokorb® mit Betondruckelementen Anhang D7 Verankerungs- und Übergreifungslängen der Querkraftstäbe bei CCE

Seite 34 der Europäischen Technischen Bewertung ETA-17/0261 vom 11. September 2017

Seite 35 der Europäischen Technischen Bewertung ETA-17/0261 vom 11. September 2017

D.1.3 Nachweise im Grenzzustand der Gebrauchstauglichkeit

D.1.3.1 Begrenzung der Rissbreiten

- Es gilt EN 1992-1-1, Abschnitt 7.3
- An der Stirnseite der Fugen sowie im Krafteinleitungsbereich ist kein zusätzlicher Nachweis erforderlich, wenn die Regelungen dieser europäisch technischen Bewertung eingehalten werden

D.1.3.2 Begrenzung der Verformungen

Bei der Berechnung der Durchbiegung sind folgende Einflussfaktoren zu berücksichtigen:

- elastische Verformungen des Plattenanschlusses und des angrenzenden Plattenbetons
- Temperaturdehnungen

Nachweis der Verformungen:

- quasi-ständige Einwirkungskombination ansetzen, gemäß den Anhängen D10 und D11
- Modell für Ermittlung der Biegeverformung in der Fuge: siehe Anhänge D10 und D11
- elastische Verformungen der Zugstäbe in Abhängigkeit der ansetzbaren Streckgrenzen (Tabelle C.1) ermitteln

Schöck Isokorb® mit Betondruckelementen	
Bemessung Nachweise im Grenzzustand der Gebrauchstauglichkeit	Anhang D9

Z29355.17

Seite 36 der Europäischen Technischen Bewertung ETA-17/0261 vom 11. September 2017

Zugband: $\Delta I_t = \epsilon_t \cdot I_{eff.t}$

Drucklager: $\Delta I_{d1} = \epsilon_{d} \cdot I_{eff.d}$ mit $E_{d} = 45.000 \text{ N/mm}^2$

Angrenzende Materialien: $\Delta I_{d2,GZG} = 0,275$ mm

Druckgurt: $\Delta I_d = \Delta I_{d1} + \Delta I_{d2}$

Drehwinkel in der Fuge: $\alpha_{\text{Fuge}} = \frac{\Delta I_{\text{t}} - \Delta I_{\text{d}}}{z}$

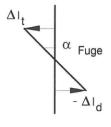


Abb. 37 Modell für die Ermittlung der Biegeverformung in der Fuge

Schöck Isokorb® mit Betondruckelementen	
Bemessung Modell zur Ermittlung der Biegeverformung in der Fuge - Dämmstoffstärke 80 - 120 mm	Anhang D10
Z29355 17	8.03.01-122/13

Seite 37 der Europäischen Technischen Bewertung ETA-17/0261 vom 11. September 2017

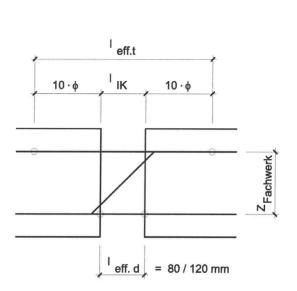


Abb.38 $I_{\rm eff.}$ für nichtrostenden gerippten Stabstahl gem. Abschn. A.3 und CCE

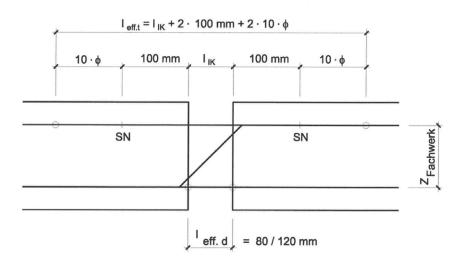


Abb. 39 l_{eff.} für nichtrostenden glatten Stabstahl Fkl. S355, S460, S690 gem. Abschn. A.3 und CCE

SN = Schweißnaht

8.03.01-122/13

Schöck Isokorb [®] mit Betondruckelementen	2
Bemessung	Anhang D11
Bestimmung I _{eff} - Dämmstoffstärke 80 - 120 mm	

Z29355.17

Technische Änderungen vorbehalten **Erscheinungsdatum: September 2018**

Schöck Bauteile GmbH Vimbucher Straße 2 76534 Baden-Baden Tel.: 07223 967-567 Fax: 07223 967-251 awt.technik@schoeck.de www.schoeck.de

