

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0773 of 27 October 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Schöck Isolink type C for multi-layer concrete panels

Glass fibre reinforced plastics connectors for use in sandwich and element walls made of concrete

Schöck Bauteile GmbH Schöckstraße 1 76534 Baden-Baden

Schöck Werk Ringstraße 2 06188 Landsberg

15 pages including 3 annexes which form an integral part of this assessment

330387-00-0601, Edition 02/2023

ETA-17/0773 issued on 21 December 2020

Z33679.23

European Technical Assessment ETA-17/0773

Page 2 of 15 | 27 October 2023

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z33679.23 8.06.01-10/22

European Technical Assessment ETA-17/0773

Page 3 of 15 | 27 October 2023

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Schöck Isolink type C with nominal diameter of 12 mm is an anchor which consists of a glass fibre reinforce plastic bar. The anchor has a profile in the shape of a trapezoidal thread with a profile depth of 0,60 to 0,75 mm and a pitch of 8 mm. The ends of the anchor are inclined.

The anchor is embedded on both sides in the concrete. It is orientated perpendicular to the wall. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the GFRP connector is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the GFRP connector of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Resistance to GFRP failure under compression load	See Annex C1
Resistance to concrete failure under compression load	See Annex C1
Resistance to GFRP failure under tension load	See Annex C1
Resistance to concrete failure (cracked and uncracked concrete) under tension load	See Annex C1
Resistance to GFRP failure under shear load	See Annex C1
Resistance to concrete failure under shear load	See Annex C1
Maximum acceptable shear deformation	See Annex C1
Minimum edge distances and spacing	See Annex B2
Modulus of Elasticity	See Annex B2
Geometric parameters	See Annex B2

Z33679.23 8.06.01-10/22

European Technical Assessment ETA-17/0773

Page 4 of 15 | 27 October 2023

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330387-00-0601, the applicable European legal act is: [2000/273/EC].

The system to be applied is: 2+

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 27 October 2023 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock

Head of Section

beglaubigt:

Müller

Z33679.23 8.06.01-10/22

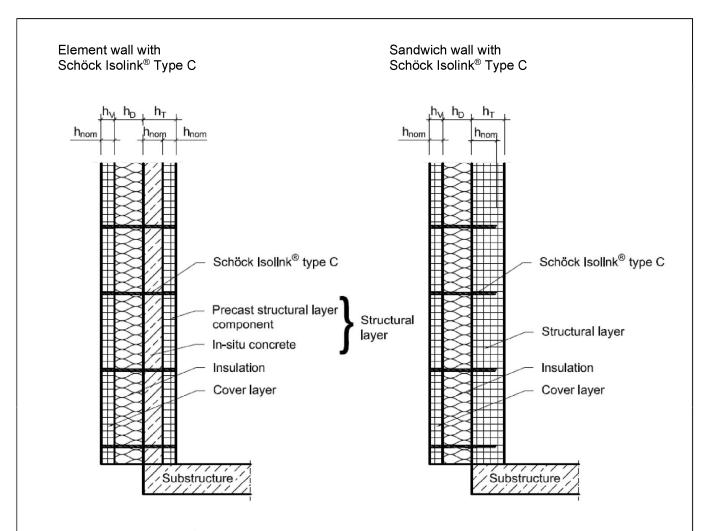


Fig. 1: Schöck Isolink[®] type C Wall with non-supported cover layer

Schöck Isolink® type C can be used in the version type C-SH as well as type C-EH

Detail Schöck Isolink® in cover layer

Schöck Isolink [®] for multi-layer concrete panels	
Product description Installed condition with Schöck Isolink® Type C-EH and Type C-SH	Annex A1

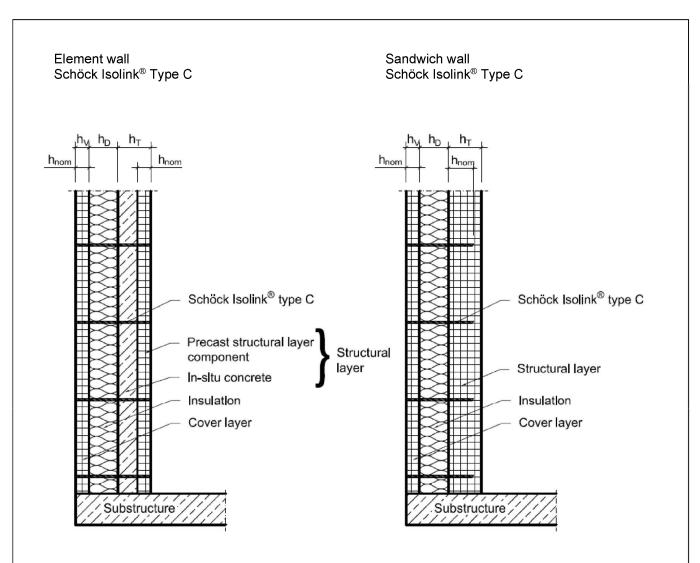


Fig. 2: Schöck Isolink® type C Wall with non-supported cover layer

The Schöck Isolink® type C can be used in the version type C-SH as well as type C-EH


Detail Schöck Isolink® in cover layer

;	Schöck Isolink [®] for multi-layer concrete panels	
	Product description Installed condition with Schöck Isolink® Type C-EH and Type C-SH	Annex A2

English translation prepared by DIBt

Specifications for intended use

B.1 Connectors subject to:

- Static and quasi-static tension, compression and shear.

B.1.1 Base materials

- Compacted reinforced normal-weight concrete without fibres according to EN 206:2013 +A2:2001.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A2:2021
- Cracked or uncracked concrete

B.1.2 Use conditions (Environmental conditions)

- The connector is intended to be used with a temperature on the surface of the concrete cover layer between +65 °C and -20 °C (maximum short-term temperature of +65 °C and maximum long-term temperature of 40 °C).

B.1.3 Design

- Connectors are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The positions of the connectors are indicated on the design drawings (e.g. position of the connector relative to the reinforcement or to supports).
- The connectors are intended to be used for design analogous to EN 1992-4:2018.
- The actual shear deformation is limited to the maximum acceptable shear deformation according Annex C1.

B.1.4 Installation requirements

- The installation of the connectors is carried out by appropriately qualified personnel under the supervision of the person responsible for the technical matters on site.
- Use of the connector as supplied by the manufacturer only without manipulations or repositioning.
- Installation in accordance with the manufacturer's specifications given in Annex B4 to B7.

Schöck Isolink® for multi-layer concrete panels	Annex B1
Intended use Specifications	Ailliex D1

Table B.1: Installation parameters and layer thickness

Description		Abbreviation / Unit		Value	
Overall embedment depth of	the anchor in concrete	h_{nom}	[mm]		≥ 40
Minimum thickness of cover	layer	$h_{v, \text{min}}$	[mm]		40
Minimum thickness of insulat	ion	h _{D,min}	[mm]	60	
Maximum thickness of insula	tion	$\mathbf{h}_{D,max}$	[mm]	350 ¹⁾	
Minimum thickness of	Minimum thickness of Element wall		[mm]	40 (PC)	140 (In-situ concrete and PC)
structural layer	Sandwich wall	•••,	ıııı [111111]		70

¹⁾ For shear h_{D,max} = 140mm

Table B.2: Calculation values for connector Schöck Isolink®

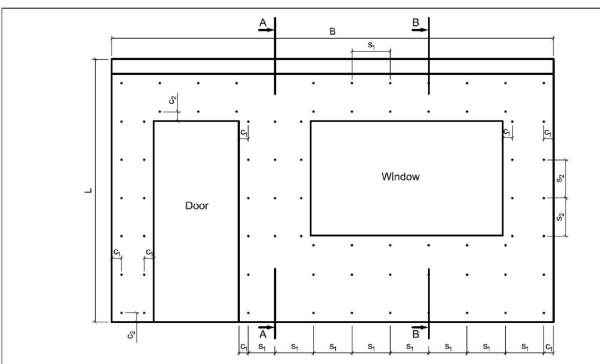

Description		viation / nit	Value
Nominal diameter	d	[mm]	12
Nominal cross section	Α	[mm²]	113
Area moment of inertia in y and z direction	ly, lz	[mm ⁴]	1161
Modulus of elasticity for tension / compression	En	[N/mm²]	60000
Modulus of elasticity for bending	Ем	[N/mm²]	60000

Table B.3: Minimum edge distances and spacing

Description	Abbreviation /		Overall embed	dment depth of concrete hnom	the anchor in
Becompaign		Unit	40 mm	60 mm	100 mm
Minimum spacing (=3,0 h _{nom})	Smin	[mm]	120	180	300
Minimum edge spacing (=1,5 h _{nom})	C _{min}	[mm]	60	90	150

Schöck Isolink® for multi-layer concrete panels	Annov B2
Intended use Installation parameters	Annex B2

- Arrangement of Schöck Isolink® in a grid accordance with structural calculations.

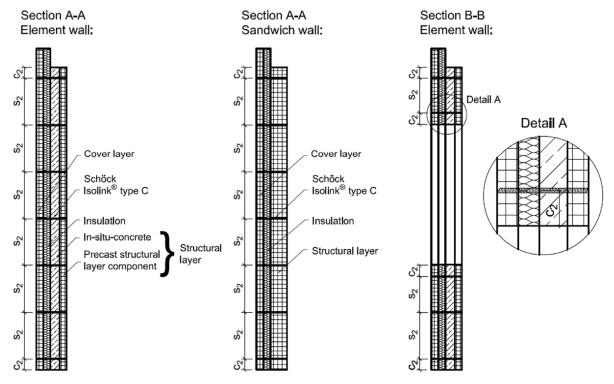


Fig. 5: Example of view of precast wall cover layer (Installation parameters and layer thickness in accordance with Annex B2)

Schöck Isolink® for multi-layer concrete panels	A
Intended use Example of wall with connectors	Annex B3

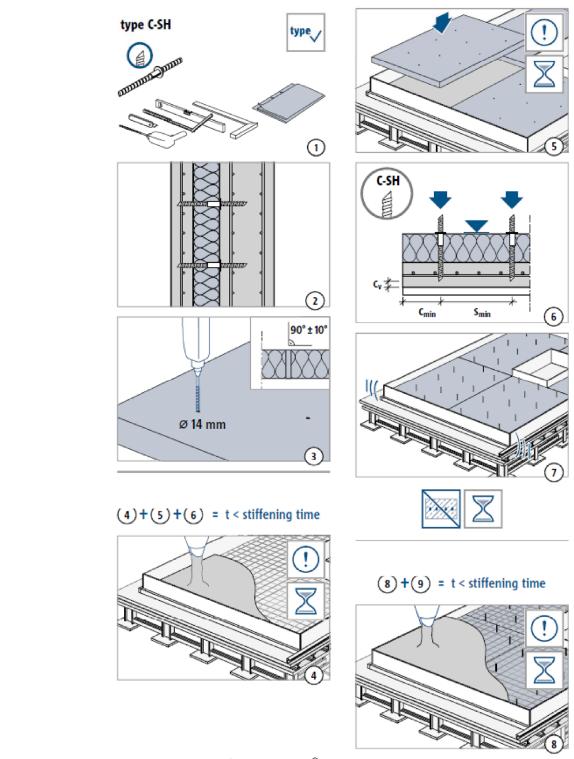


Fig. 6: Installation instruction - Schöck Isolink® for sandwich wall - page 1

Schöck Isolink [®] for multi-layer concrete panels	Annov P4
Intended use Installation instruction sandwich wall, type C-SH	Annex B4

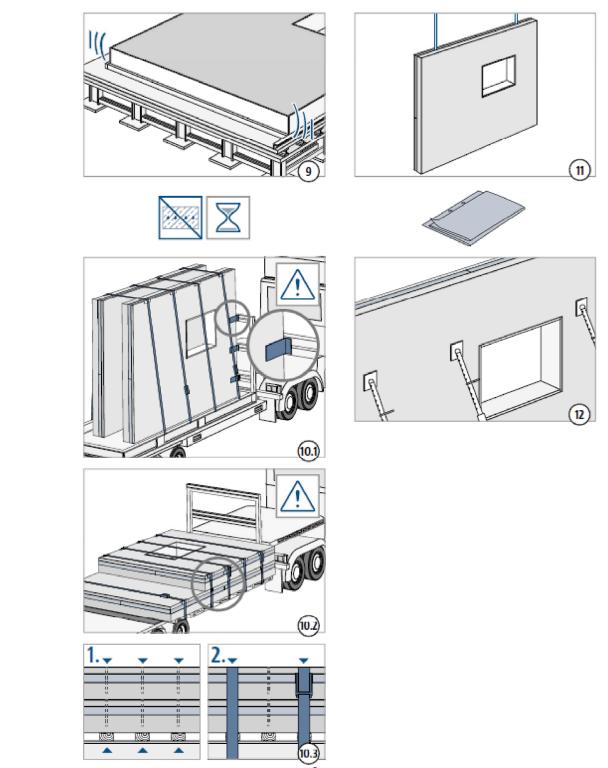


Fig. 7: Installation instruction - Schöck Isolink® for sandwich wall - page 2

Schöck Isolink® for multi-layer concrete panels	Annex B5
Intended use Installation instruction sandwich wall, type C-SH	Ailliex Do

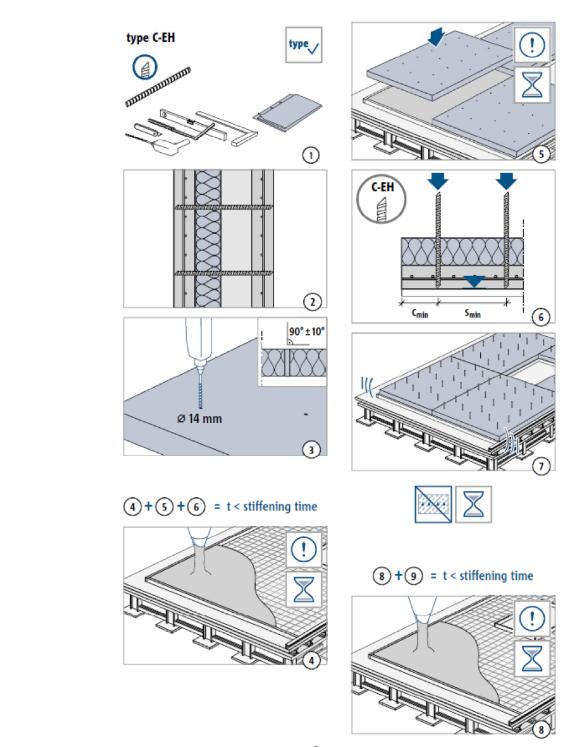
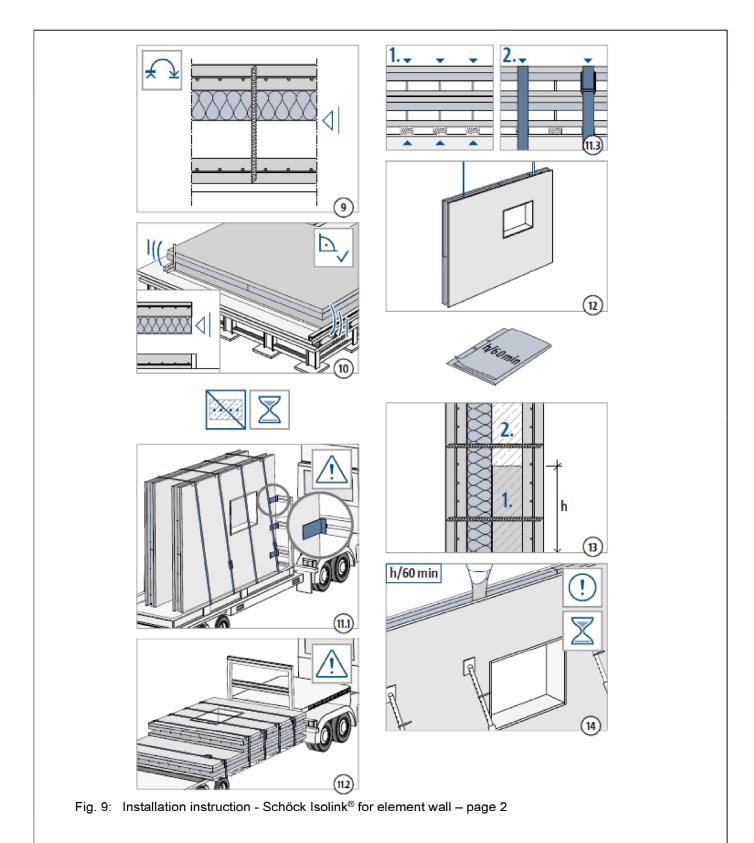



Fig. 8: Installation instruction - Schöck Isolink® for element wall - page 1

Schöck Isolink® for multi-layer concrete panels	. 50
Intended use Installation instruction element wall, type C-EH	Annex B6

Schöck Isolink® for multi-layer concrete panels		
Intended use Installation instruction element wall, type C-EH	Annex B7	

Table C.4: Characteristic resistance under tension, compression or shear and acceptable shear deformation

Essential characteristic	Abbreviation	Strength class	Thickness of insulation h _D	Overall embedment depth of the anchor in concrete hnom		
				40 mm	60 mm	100 mm
Resistance to GFRP failure			250 mm	31,5 kN		
under compression load	INRK,GFRP,D	to C50/60	350 mm	17,2 kN		
Resistance to concrete failure under compression load	N Rk,c,D	C20/25 to C50/60	60 mm to 350 mm	6,5 kN 20,4 kN		1 kN
Resistance to GFRP failure under tension load	N rk,gfrp	C20/25 to C50/60	60 mm to 350 mm	8,5 kN	14,9 kN	24,5 kN
Resistance to concrete failure under tension load (uncracked concrete)	N _{Rk,c,ucr}	C20/25	60 mm	6,6 kN	11,2 kN	25,5 kN
		C50/60	350 mm	9,9 kN	19,0 kN	42,4 kN
Resistance to concrete failure under tension	N _{Rk,c,cr}	C20/25	60 mm	3,2 kN	6,1 kN	16,5 kN
load (cracked concrete)		C50/60	350 mm	4,6 kN	13,3 kN	20,7 kN
Resistance to GFRP failure under shear load	V _{Rk,} gfrp	C20/25 to	60 mm	2,5 kN		
		C50/60 140 mm	1,5 kN			
Resistance to concrete failure under shear load (cracked concrete)	V _{Rk,c}	C20/25 to C50/60	60 mm to 350 mm	3,4 kN		
Maximum acceptable shear deformation	W max	C20/25 to C50/60	60 mm	2,0 mm		
			100 mm	5,0 mm		

Schöck Isolink® for multi-layer concrete panels	Annoy C1
Performance Characteristic resistances and acceptable shear deformation	Annex C1