Déclaration de performances n° : DOP_IK_ETA-17-0261_v4_FR

1. Code d'identification unique du type de produit :

Schöck Isokorb® avec éléments de compression en béton

2. Usage prévu :

Éléments structurels isolants pour la rupture thermique des éléments de construction en béton armé

3. Fabricant :

Schöck Bauteile GmbH, Schöckstraße 1, 76534 Baden-Baden (D)

4. Système(s) d'évaluation et de vérification de la continuité des performances :

Système 1+

5. Évaluation technique :

Document européen d'évaluation/Norme harmonisée/Norme nationale : EAD 050001-00-0301, établi en février 2018 Évaluation technique/Autorisation européenne : ETA-17/0261, établie le 07.09.2022 Organisme d'évaluation technique/Institut d'autorisation : Deutsches Institut für Bautechnik (DIBt), Kolonnenstr. 30B, 10829 Berlin (DE) Organisme notifié/Organisme de surveillance indépendant : Versuchsanstalt für Stahl, Holz und Stein, Universität Karlsruhe (TH), 76128 Karlsruhe (D): NB 0769

6. Performance(s) déclarée(s) :

Caractéristiques essentielles	Performance				
Capacité portante					
f _{yd} ; Z _{Rd}	voir annexe C1 : tableau C.1, tableau C.2				
V _{Rd} (Z _{V,Rd})	voir annexe C1 : tableau C.1, tableau C.3				
D _{Rd}	voir annexes C.2 et C.3 : tableau C.4, tableau C.5, tableau C.6, tableau C.7				
Comportement au feu des matériaux de construction					
Classe selon EN 13501-1	voir annexe A5				
Acier pour béton	Classe A1				
Acier inoxydable	Classe A1				
Béton pour le module de compression	Classe A1				
Joint isolant	Classe E				
Matériel de protection contre les incendies	Classe A1				
Coffrage plastique HTE	NPD				
Matériau de construction moussant en cas d'incendie	Classe E				
Rails en plastique	NPD				
Résistance au feu					
Durée de résistance au feu (résistance R)	voir annexes C4, C5 et C6 : tableau C.8, tableau C.9 exécution selon les illustrations 28 à 32				
Isolation contre les bruits d'impact					
NPD					
Résistance thermique					
R _{eq, TI}	voir annexes C8 et C9 : tableau C.11				

7. Documentation technique appropriée et/ou documentation technique spécifique :

Documentation technique pour l'évaluation technique européenne du Schöck Isokorb[®] avec éléments de compression en béton – déposée auprès du DIBt (Deutsches Institut für Bautechnik).

Les performances du produit indiqué ci-dessus sont conformes à la performance déclarée/aux performances déclarées. Conformément au règlement (UE) n° 305/2011, la présente déclaration des performances est établie sous la seule responsabilité du fabricant mentionné ci-dessus. Signé pour le fabricant et en son nom par :

Baden-Baden, 01.10.2022

(Lieu, date)

i.V. N.Conf

(Dr.-Ing. Niklas Puttendörfer, Head of R&D)

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0261 of 9 February 2021

English translation prepared by DIBt - Original version in German language

General Part

Trade name of the construction productSchöck lsokorb® with concrete compression elementsProduct family to which the construction product belongsLoad bearing thermal insulation elements which form a thermal break between balconies and internal floorsManufacturerSchöck Bauteile GmbH Vimbucher Straße 2 76534 Baden-Baden DEUTSCHLANDManufacturing plantSchöck Bauteile GmbH, Vimbucher Straße 2 76534 Baden-Baden, GermanySchöck Bauteile GmbH, Nordsternstraße 61 45329 Essen, Germany
to which the construction product belongsthermal break between balconies and internal floorsManufacturerSchöck Bauteile GmbH Vimbucher Straße 2 76534 Baden-Baden DEUTSCHLANDManufacturing plantSchöck Bauteile GmbH, Vimbucher Straße 2 76534 Baden-Baden, GermanySchöck Bauteile GmbH, Nordsternstraße 61
Vimbucher Straße 2 76534 Baden-Baden DEUTSCHLAND Manufacturing plant Schöck Bauteile GmbH, Vimbucher Straße 2 76534 Baden-Baden, Germany Schöck Bauteile GmbH, Nordsternstraße 61
76534 Baden-Baden, Germany Schöck Bauteile GmbH, Nordsternstraße 61
Schöck Bauteile Ges.m.b.H., Handwerkstraße 2 4055 Pucking, Austria
Schöck Sp. z o.o., ul. Przejazdowa 99, 43-100 Tychy, Poland
This European Technical Assessment contains42 pages including 4 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis ofEAD 050001-00-0301
This version replaces ETA-17/0261 issued on 11 September 2017

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-17/0261 English translation prepared by DIBt

Page 2 of 42 | 9 February 2021

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 42 | 9 February 2021

European Technical Assessment ETA-17/0261 English translation prepared by DIBt

Specific part

1 Technical description of the product

The Schöck Isokorb[®] with concrete compression elements is used as load-bearing thermal insulation element to connect reinforced concrete slabs.

The product description is given in Annex A.

The characteristic material values, dimensions and tolerances of the Schöck Isokorb[®] with concrete compression elements not indicated in Annexes A1 to A5 shall correspond to the respective values laid down in the technical documentation^[1] of this European Technical Assessment.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the Schöck Isokorb[®] with concrete compression elements is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the Schöck Isokorb[®] with concrete compression elements of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Load bearing capacity	See Annex C1 – C3

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire of materials	See Annex A5
Resistance to fire	See Annex C4 – C6

3.3 Protection against noise (BWR 5)

Essential characteristic	Performance
Impact sound insulation	No performance assessed

3.4 Energy economy and heat retention (BWR 6)

Essential characteristic	Performance		
Thermal resistance	See Annex C8 – C9		

[1]

The technical documentation of this European technical approval is deposited at the Deutsches Institut für Bautechnik and, as far as relevant for the tasks of the approved bodies involved in the attestation of conformity procedure, is handed over to the approved bodies.

Page 4 of 42 | 9 February 2021

European Technical Assessment

ETA-17/0261

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 050001-00-0301, the applicable European legal act is: [1997/0597/EC].

The systems to be applied is: 1+

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

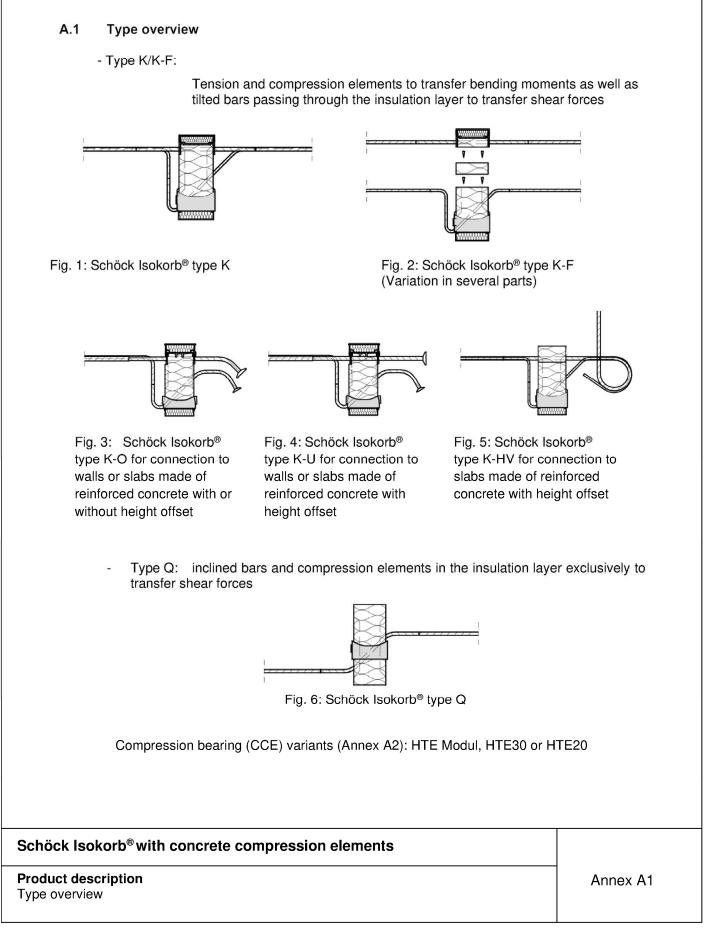
The following standards are referred to in this European Technical Assessment:

-	EN 206:2013+A1:2016	Concrete: Specification, performance, production and conformity			
-	EN 1992-1-1:2004/A1:2014	Eurocode 2: Design of concrete structures – Part 1-1: General design rules and rules for buildings			
-	EN 1993-1-1:2005 + AC:2009	Eurocode 3: Design of steel structures – Part 1-1: General design rules and rules for buildings			
-	EN 1993-1-4:2006 + A1:2015	Eurocode 3: Design of steel structures – Part 1-4: General rules – Supplementary rules for stainless			
_	EN 10088-1:2014	Stainless steels – Part 1: List of stainless steels			
_	EN 12664:2001	Thermal performance of building materials and products – Determination of thermal resistance by means of guarded hot plate and heat flow meter methods – Dry and moist products of medium and low thermal resistance			
-	EN 13163:2012+A2:2016	Thermal insulation products for buildings – Factory made expanded polystyrene (EPS) products – Specification			
-	EN 13245-1:2010	Plastics – Unplasticized poly(vinyl chloride) (PVC-U) profiles for building applications – Part 1: Designation of PVC-U profiles			
-	EN 13245-2:2008 + AC:2009	Plastics – Unplasticized poly(vinyl chloride) (PVC-U) profiles for building applications – Part 2: PVC-U profiles and PVC-UE profiles for internal and external wall and ceiling finishes			
-	EN 13501-1:2018	Fire classification of construction products and building elements – Part 1: Classification using data from reaction to fire tests			
-	EN ISO 6946:2017	Building components and building elements – Thermal resistance and thermal transmittance – Calculation method (ISO 6946:2017)			
-	EN ISO 10211:2017	Thermal bridges in building construction – Heat flows and surface temperatures – Detailed calculations (ISO 10211:2017)			

European Technical Assessment ETA-17/0261

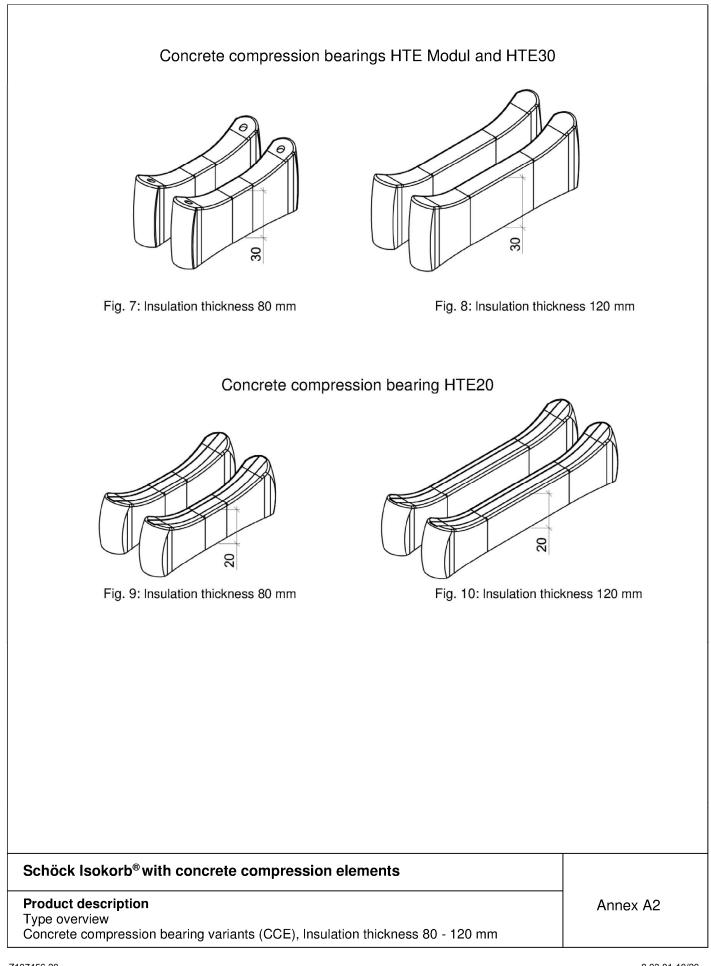
Page 5 of 42 | 9 February 2021

English translation prepared by DIBt


– EN ISO 10456:2007+AC:2009	Building materials and products – Hygrothermal properties – Tabulated design values and procedures for determining declared and design thermal values (ISO 10456:2007 + Cor. 1:2009)
- EN ISO 17660-1:2006	Welding – Welding of reinforcing steel – Part 1: Load-bearing welded joints (ISO 17660-1:2006)
- EN ISO 17855-1:2014	Plastics – Polyethylene (PE) moulding and extrusion materials - Part 1: Designation system and basis for specifications (ISO 17855-1:2014)
- EN ISO 17855-2:2016	Plastics - Polyethylene (PE) moulding and extrusion materials – Part 2: Preparation of test specimens and determination of properties (ISO 17855-2:2016)

Issued in Berlin on 9 February 2021 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Kisan


Page 6 of European Technical Assessment ETA-17/0261 of 9 February 2021

Page 7 of European Technical Assessment ETA-17/0261 of 9 February 2021

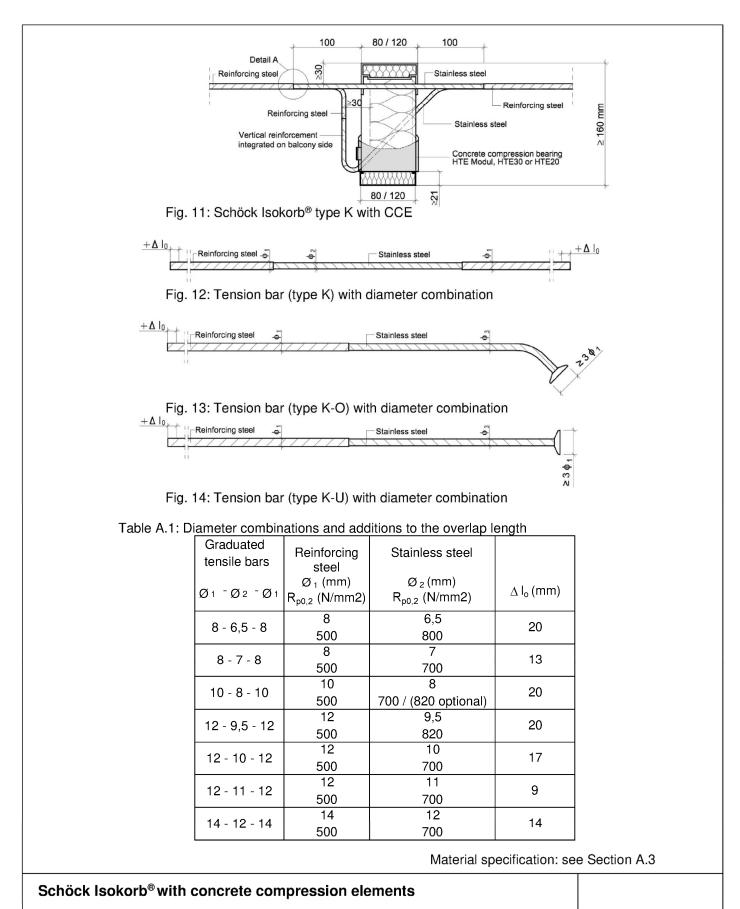
A.2 Dimensions and positioning of the bars and compression elements in the area of the insulation joint

In the insulation joint (80 or 120 mm), tensile and shear force bars consist of stainless reinforcing round steel or stainless steel bars over a length of at least 10 cm within the connected concrete components. Reinforcing steel is welded to the end of these bars.

Tension bars:

eter: er per meter: listance: er per meter eter: type Q: Placement between the individual elements of the	Ø ≤ 20 mm stepped nominal diameter in accordance with Annex A4 n ≥ 4/m ≤ 300 mm, on average ≤ 250 mm n ≥ 4/m Ø ≤ 14 mm
listance: ee bars: er per meter eter: type Q: Placement between the	with Annex A4 n ≥ 4/m ≤ 300 mm, on average ≤ 250 mm n ≥ 4/m
listance: ee bars: er per meter eter: type Q: Placement between the	≤ 300 mm, on average ≤ 250 mm n ≥ 4/m
ee bars: er per meter eter: type Q: Placement between the	n ≥ 4/m
er per meter eter: type Q: Placement between the	
eter: type Q: Placement between the	
type Q: Placement between the	Ø ≤ 14 mm
Placement between the	Ø ≤ 14 mm
compression bearing pairs (type K, K-F):	Ø ≤ 8 mm
tion in the insulation layer:	Usually $\alpha = 45^{\circ}$ for an insulation thickness of 80 mm, $\alpha = 35^{\circ}$ for an insulation thickness of 120 mm
listance of the bars:	≤ 300 mm, on average ≤ 250 mm
ete-free area:	Bars must not have any curvature
ter of bending block around mpression element:	In accordance with Annex B5, D6, D8, D9 and in compliance with the rules of EN 1992-1-1
ng point of the inner curvature:	\geq 2 Ø von inside the concrete
compression bearing (CCE):	
per per meter:	n ≥ 4/m
spacing:	≤ 250 mm
num number per component to	n ≥ 4
2	ompression bearing (CCE): er per meter: spacing:

Schöck Isokorb[®] with concrete compression elements


Product description Dimensions

Annex A3

Page 9 of European Technical Assessment ETA-17/0261 of 9 February 2021

English translation prepared by DIBt

Product description Dimensions

Annex A4

Page 10 of European Technical Assessment ETA-17/0261 of 9 February 2021

English translation prepared by DIBt

A.3 Materials

The following materials must be used:

B500B, class A1 according to EN 13501-1			
B500 NR or stainless steel round bars (S355, S460, S690) with corrosion resistance class III according to EN 1993-1-4, class A1 according to EN 13501-1			
High-performance fine-grained concrete, class A1 according to EN 13501-1			
Polystyrene rigid foam (EPS) according to EN 13163, class E as per EN 13501-1			
Moisture repellent, weather-resistant and UV- resistant panels, class A1 according to EN 13501-1			
PE-HD plastic according to EN ISO 17855-1 and EN ISO 17855-2, performance according to EN 13501-1 is not determined			
Halogen-free, three-dimensional foaming building material on graphite basis with foaming factor min. 14; class E according to EN 13501-1			
PVC-U according to EN 13245-1 and EN 13245-2, performance according to EN 13501-1 is not determined			

Schöck Isokorb® with concrete compression elements

Product description Materials

Annex A5

B.1 Intended use

- Static or quasi-static action loads
- Minimum concrete strength class of the reinforced concrete components to be connected made of normal strength concrete according to EN 206: C20/25, for external components C25/30
- For the connection of 16 cm to 50 cm thick reinforced concrete slabs

B.1.1 Design

The provisions of EN 1992-1-1 in connection with EN 1993-1-1 and in accordance to Annex D shall apply.

- The connected slab shall be divided by joints (arranged in accordance with section B.2.1)
- Structural verification of the further transmission of the transferred forces shall be provided
- The deviations from the strain of a structurally identical slab without an insulation joint are limited to the joint area and the connecting edges through compliance with the provisions of this European technical assessment
- The undistributed strain may then be assumed to exist at a distance h from the joint edge
- Variable moments and shear forces along a connected edge shall be considered in the structural analysis
- Strain on the slab connections due to local twisting moments (torques) shall be excluded
- Small normal forces due to imposed deformation in the girder bars (at the end of the line supports, e.g. beside free edges or expansion joints) shall be neglected in the calculation, normal constraining forces in the direction of the bars of the slab connections shall be excluded (see Annex B2 for example)
- Connected components: ratio height/ width ≤ 1/3, if no special verification is performed for the transfer of the transverse tensile stresses

B.2 Installation requirements

B.2.1 Centre and joint distances

- Tensile and compression members, shear force bars (The provisions according to section D.1.2.3):

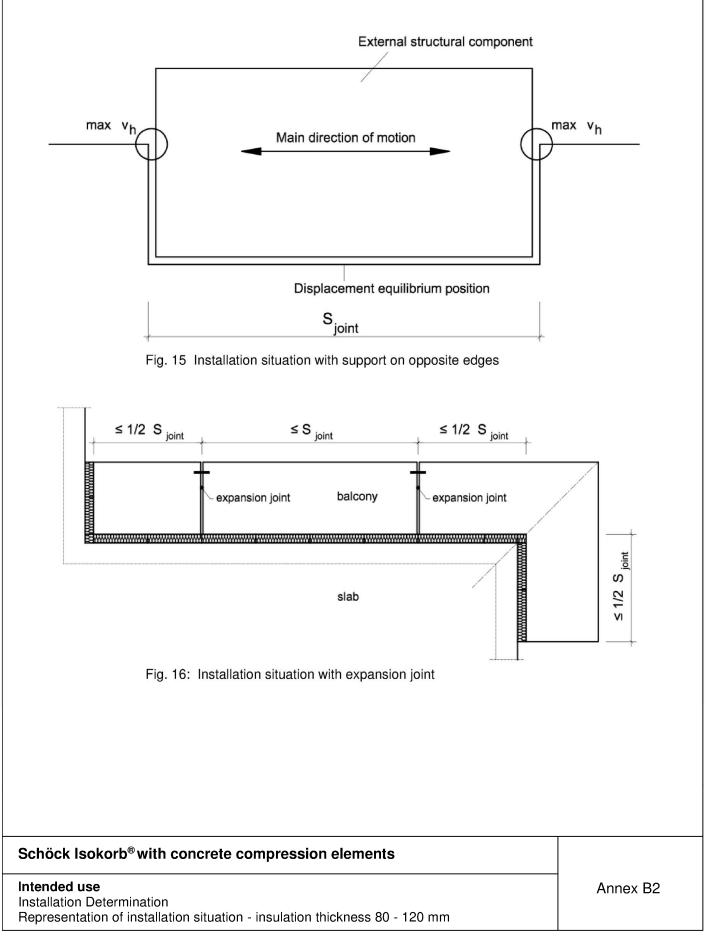
$$5 \text{ cm} \le s_1 \le \frac{1}{2} \cdot s_{2,\max}$$

where:

s₁ center distance from the free edge or the expansion joint

s_{2,max} permissible maximum distance between the bars

- External reinforced concrete components: expansion joints shall be placed in a right angle to the insulation layer (see Annex B2)
- Joint distance: Table B.1


Schöck Isokorb[®] with concrete compression elements

Intended use Installation requirements

Annex B1

Page 12 of European Technical Assessment ETA-17/0261 of 9 February 2021

Ţ	Table B.1: Permitted joint spacing in [m]							
	Thickness of	Bar diameter in the joint						
	the insulation	[mm]						
	joint	< 0 F	10	11	12	14	16	20
	[mm]	≤ 9,5	10		12	14	10	20
	80	13,5	13,0	12,2	11,7	10,1	9,2	8,0
	120	23,0	21,7	20,6	19,8	17,0	15,5	13,5

B.2.2 Structural design

The minimum concrete cover in accordance with EN 1992-1-1 shall be observed. This applies to tensile bars, the shear reinforcement or existing installation reinforcement. The reinforcement of the concrete structures connected to the load bearing thermal insulation elements shall be extended to the insulation layer in consideration of the required concrete cover in accordance with EN 1992-1-1.

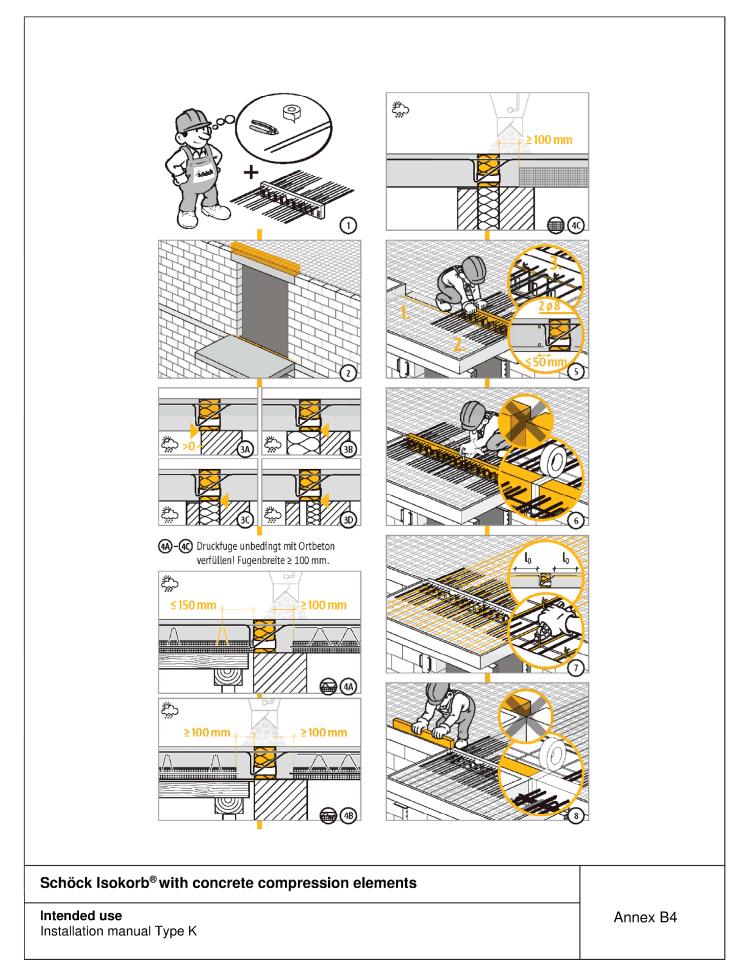
The transverse bars of the upper connection reinforcement shall generally lie on the outside on the longitudinal bars of the slab connections. In the case of bars with a nominal diameter \emptyset < 16 mm an exception may be made if the following conditions are respected:

- The installation of the shear force bars directly underneath the longitudinal bars of the slab connection is possible
- The installation is monitored, e.g. by the construction engineer
- The necessary installation steps shall be described in the installation manual (see Annex B4)

The front surface of the components to be connected shall receive edge reinforcement in accordance with EN 1992-1-1, section 9.3.1.4. Edge reinforcement e.g. in the form of stirrups with at least $\emptyset \ge 6$ mm, s ≤ 25 cm and 2 longitudinal bars each with $\emptyset \ge 8$ mm shall be positioned on the front surface of the connected slabs parallel to the insulation joint. Including of vertical legs of the shear force bars for Isokorb® types K and K-F (see Annexes B5 and B6) as well as lattice girders with a maximum distance of 100 mm from the insulation joint in accordance with Annex B7 Fig. 27 shall be permitted.

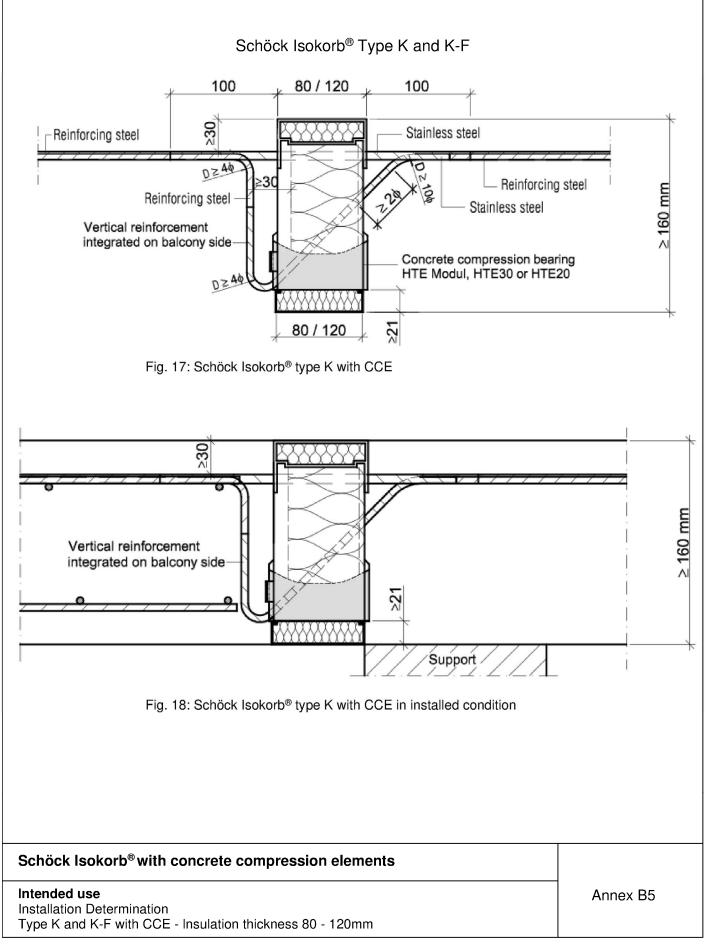
Edge reinforcement on the component sides running parallel to the load-bearing thermal insulation elements should be installed as follows:

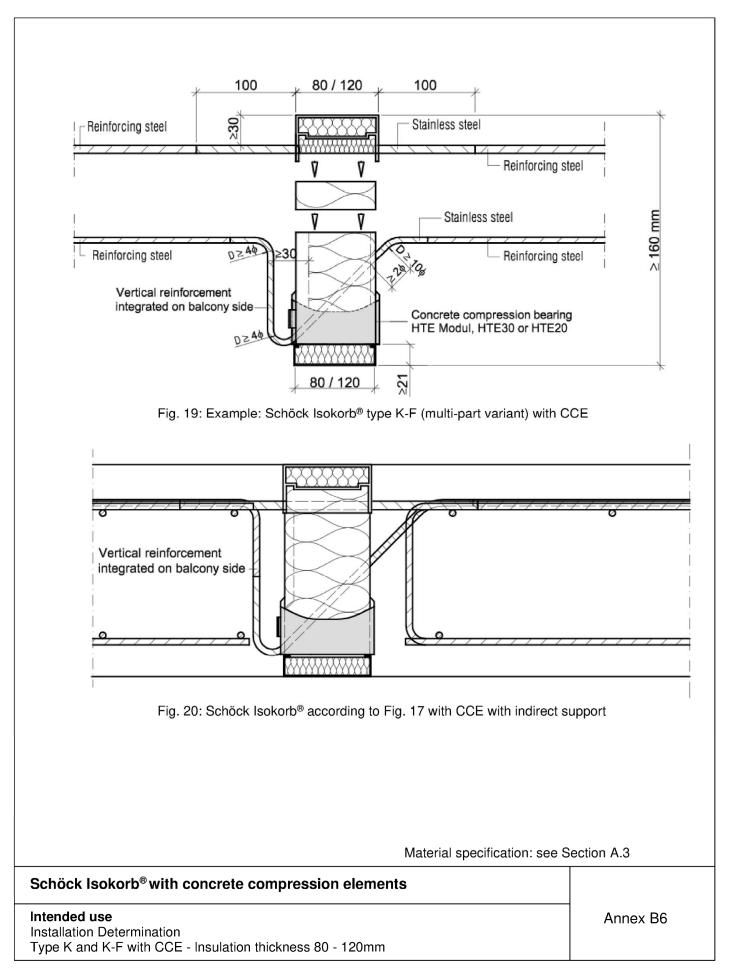
- Moments and shear forces are transferred:
 - Shall overlap the tensile bars
- Uplift shear forces can also be transferred:
 - Shall overlap the tensile and compression bars
 - Exclusively shear forces are transferred:
 - The required tensile reinforcement shall not be graded around the load-bearing \bigcirc thermal insulation element
 - The tensile reinforcement shall be anchored in the compression zone on the \cap frontal side with hooks
 - Alternatively: stirrups at every shear force bar

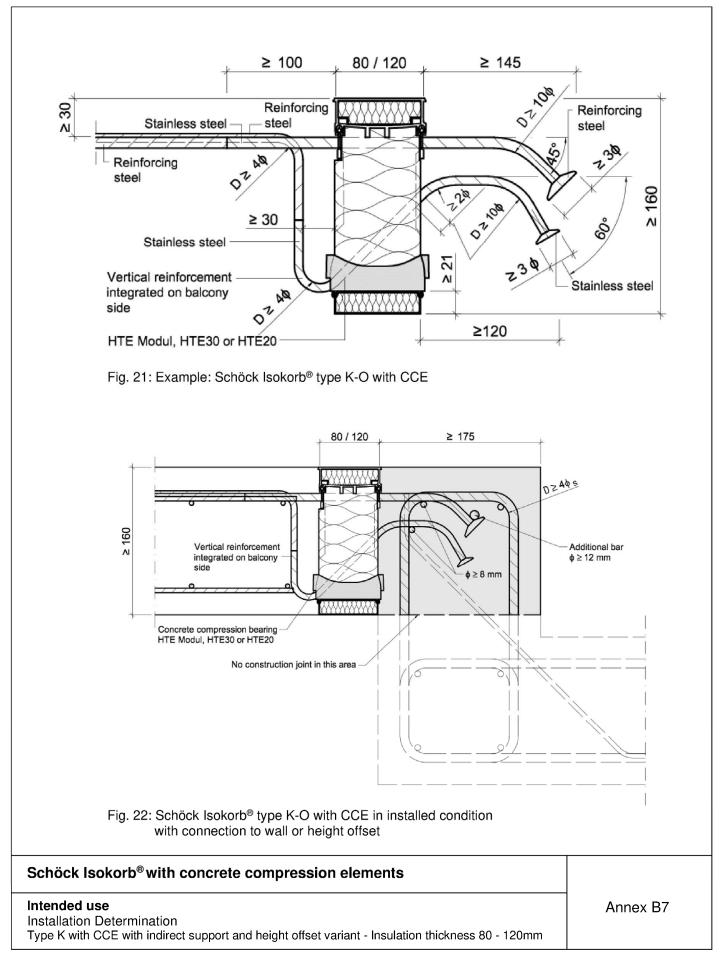

Subsequent bending of the bars of the load-bearing thermal insulation element is not permissible.

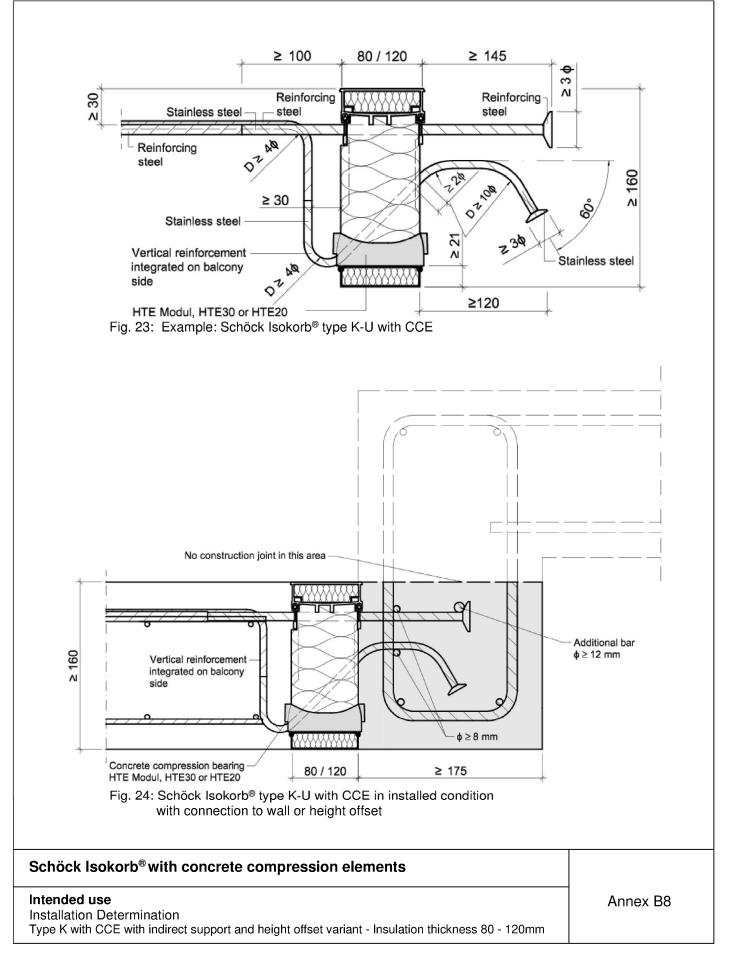
Schöck Isokorb[®] with concrete compression elements

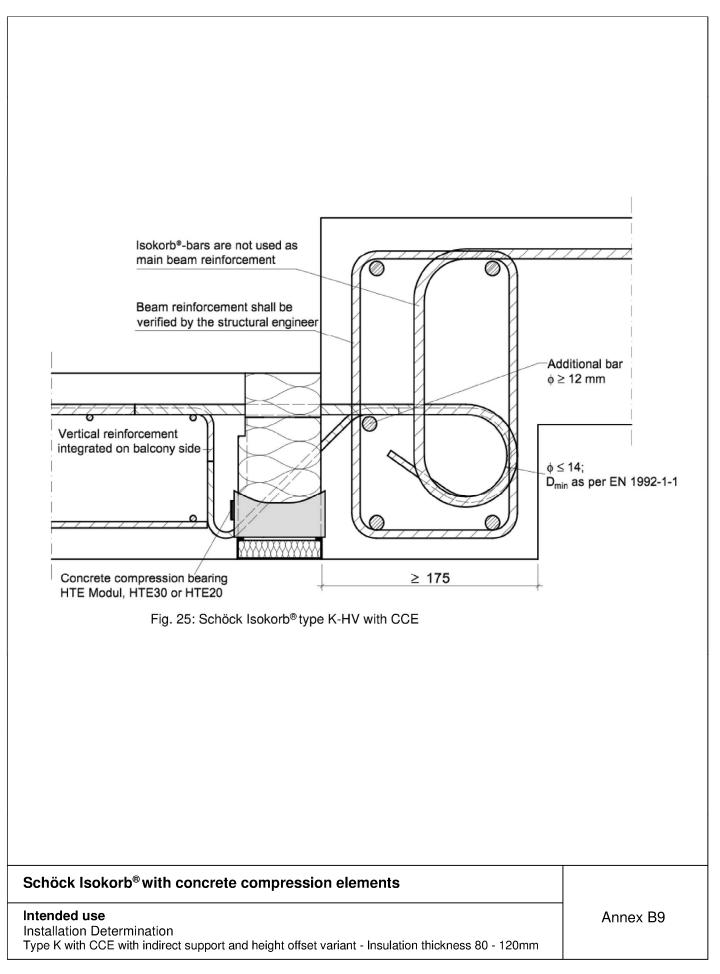
Intended use Installation requirements Annex B3


Page 14 of European Technical Assessment ETA-17/0261 of 9 February 2021

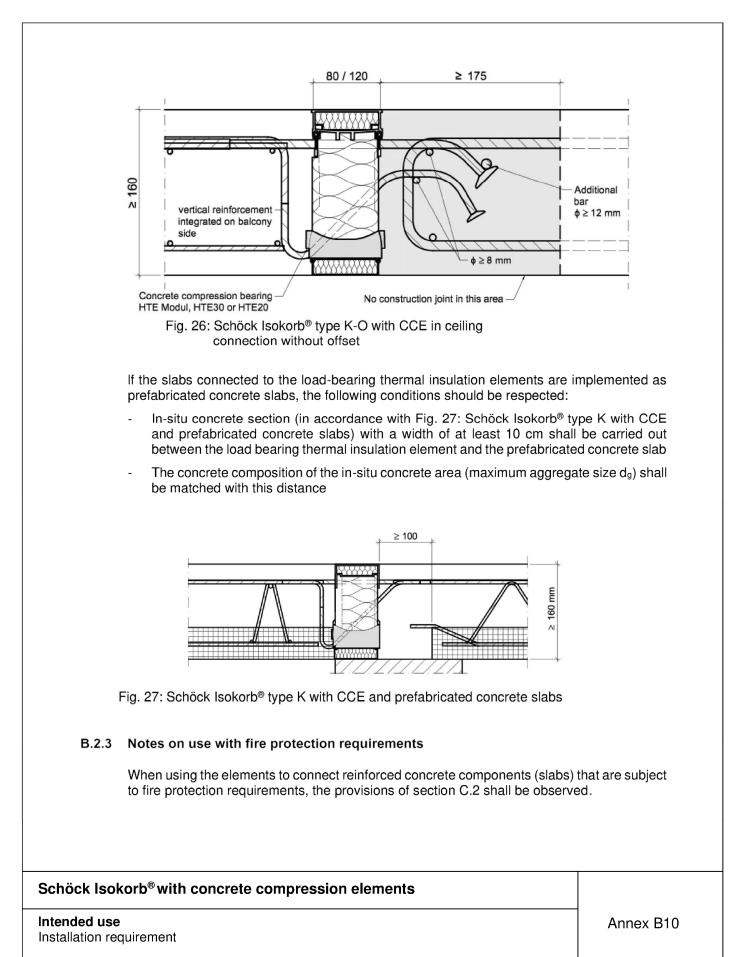

Page 15 of European Technical Assessment ETA-17/0261 of 9 February 2021


Page 16 of European Technical Assessment ETA-17/0261 of 9 February 2021


Page 17 of European Technical Assessment ETA-17/0261 of 9 February 2021


Page 18 of European Technical Assessment ETA-17/0261 of 9 February 2021

Page 19 of European Technical Assessment ETA-17/0261 of 9 February 2021



Page 20 of European Technical Assessment ETA-17/0261 of 9 February 2021

English translation prepared by DIBt

Z107456.20

C.1 Load-bearing capacity

C.1.1 Load-bearing capacity of the used bars

C.1.1.1 Tension and shear bars

Table C.1: Design values of the yield strengths for tension loads for the bars used

Bar made from:	f _{yd} in N/mm²		
B500B NR	435		
S355 round steel	323		
S460 round steel	418		
S690 round steel	627		
B500 NR R _{p0,2} 700	609 (for tension bars)		
B500 NR Rp0,2 800	661 (for tension bars)		
B500 NR Rp0,2 820	678 (for tension bars)		

C.1.1.2 Tension bars with anchor heads (type K-O and type K-U)

The design value for the tensile force per bar results from the concrete strength class and anchorage of the anchor head according to Table C.2. A maximum of ten tensile bars with anchoring heads can be placed per meter.

Table C.2: Tensile capacity	of tensile bars with anchor head	depending on the anchorage
-----------------------------	----------------------------------	----------------------------

Concrete strength class	Anchoring of the anchor head	Z _{Rd} [kN]
C25/30	According to Fig. 47 and Fig. 48 within the hatched area	47,8
C25/30	According to Fig. 47 and Fig. 48 outside the hatched area	34,1
C20/25	According to Fig. 47 and Fig. 48 within the hatched area	43,0
C20/25	According to Fig. 47 and Fig. 48 outside the hatched area	30,7

C.1.1.3 Shear bars with anchor heads (type K, variants -O and -U)

A maximum of six shear force bars with a nominal diameter of 8 mm with anchor head must be arranged per meter. The design values per bar are shown in Table C.3.

Table C.3:	Design value	es per shear	force bar

Concrete strength class	Z _{V,Rd} [kN]
C25/30	21,8
C20/25	19,6

Schöck Isokorb® with concrete compression elements

Performance parameters Load-bearing capacity

C.1.2 Design value of the transmittable compression force D_{Rd}

C.1.2.1 General

The design value of the transmittable compression force D_{Rd} is calculated depending on the compression bearing variant:

D_{Rd} =min $\left\{ n \right\}$	n∙ D _{Rd,c} ⊪ D _{Rd ,CCE}	
mit:		
D _{Rd}		Design value of the transmittable compression force in kN/m
n		Existing number of thrust compression bearings per meter
D _{Rd,c}		Design value for concrete edge bearing capacity in kN/ bearing pair
$\mathrm{D}_{Rd,CCE}$		Design value of the compression bearing capacity in kN/ bearing pair

C.1.2.2 HTE Modul

 $D_{Rd,CCE} = 34,4 \text{ kN}$

Table C.4: Design values for the HTE Modul (alternatively HTE30)

Minimum center distance CCE, compression bearing number/m	Concrete strength class	D _{Rd,c} in kN/ bearing pair
5,0 cm 11 - 18	C20/25 C25/30 ≥C30/37	25,5 31,8 34,4
5,5 cm 11 - 16	C20/25 C25/30 ≥C30/37	26,6 33,3 34,4
6,0 cm 11 - 14	C20/25 C25/30 ≥C30/37	27,8 34,4 34,4
10,0 cm 4-10	C20/25 C25/30 ≥C30/37	34,4 34,4 34,4

For connection situations as shown in Fig. 24 and Fig. 25, the design values according to Table C.4 must be determined under consideration of $a_{c,uz}$ and $a_{c,h}$ and a maximum of 16 compression bearings have to be used:

with:

a c,uz	 see Table C.5
a _{c,z}	 see Table C.6

If the design values exceed a compression force of 350 kN/m, four stirrups per meter shall be installed evenly on the bearing side in accordance with Annex D6 along the length of the connection.

Schöck Isokorb[®] with concrete compression elements

Performance parameters Load-bearing capacity

Page 23 of European Technical Assessment ETA-17/0261 of 9 February 2021

English translation prepared by DIBt

D _{Rd,c} =	$\frac{1}{1000} \cdot \mathbf{a}_{cd} \cdot \mathbf{a}_{c}$	a,uz • a c,z • c 1	min(2.	a c₁+44 mm) · (f _{ck,cube}) ^{1/2}	
c ₁ edge d a edge d f _{ck,cube} charac a _{c,uz} see Ta	ble C.7 listance of the listance of the teristic cube c ble C.5 ble C.6	compression	on bearir	ngs in mm		and D4
Table C.5: Factor ac,uz Connection	for considerati beam widt		eam wid a _{c,}		ffsets	
situation Fig. 24 and Fig. 25	$175 \le b \le 240$		0,0245 ·	b ^{2/3}		
others	b > 240		0,95 1,0			
Table C.6: Factor a _{c,z} f						
compression force D _{Rd} in kN/m	connection	i silualion		nal lever arm z [mm]	a _{c,z}	
≥ 350	Fig. 24 and	Fig. 25	80 ≤ z z > 150		1,0 150/z	
< 350	others general			-	1,0 1,0	
Table C.7: Design valu	es for HTE30	and HTE2(CCI HTE	=	С	CE HTE30	
		without s	pecial	without spec		special rrups*
a _{cd}		1,7	D	1,80	2	2,23
Minimum center dis compression bearing		10,0 4 - 1		10,0 cm 4 - 10		0 cm - 12
D _{Rd,CCE} [kN/bear	ring pair]	38,	0	45,0	2	45,0
* four special stirrups p Annex D6 If the number of compr compression bearings from Table C.4.	ession bearing	gs is excee	ded or th	ne minimum di	stance betw	veen the

Page 24 of European Technical Assessment ETA-17/0261 of 9 February 2021

English translation prepared by DIBt

C.2 Fire resistance

C.2.1 Performance features regarding load-bearing capacity In case of fire

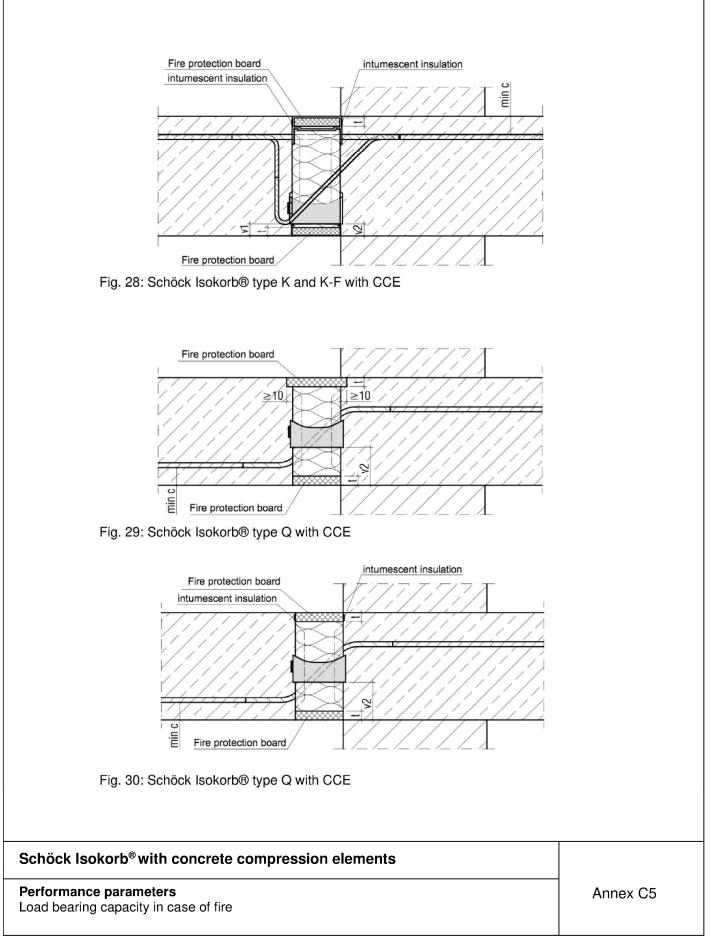
the performance characteristics specified in Annexes C1 to C3 for verification according to the intended use under normal temperatures are met, the load bearing capacity of connections with Schöck lsokorb® is also guaranteed in case of fire for the fire resistance period indicated in Table C.9. This applies to a reduction coefficient η_{fi} according to EN 1992-1-2, section 2.4.2 to η_{fi} = 0,7, for designs according to Fig. 28 to Fig. 32 and subject to the following boundary conditions..

- The connection joint provided with the Schöck Isokorb® is completely covered with fire protection plates in accordance with Annex A5 on the top and bottom side respectively (see Appendix C5 and C6).
- The fire protection plates in the area of planned tensile loads shall be realized either with a lateral overhang on the side of 10 mm opposite the insulation body (see Annex C5, Fig. 29 and Annex C6, Fig. 32) or with additional intumescent seals on both lateral surfaces (see Annex C5, Fig. 28 and Fig. 30 and Annex C6, Fig. 31).
- The required thickness t of the fire protection plates, the minimum axis spacing u and v and the minimum concrete cover of the steel reinforcement shall be taken from Table C.8.
- Table C.8: Minimum dimensions of c, u and v and required fire protection plate thickness t in [mm]

min c [mm]	30
min u [mm]	35
min t [mm]	According to data sheet
v ₁ /v ₂ * [mm]	20/21
* See Annex C5	•

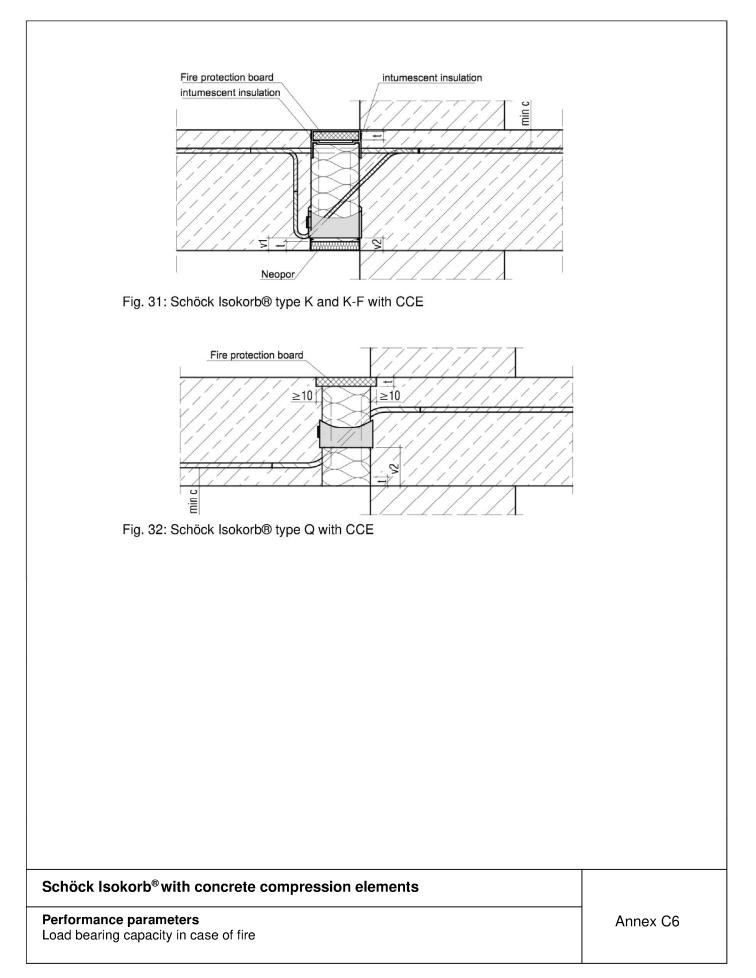
See Annex C5

Table C.9: Fire resistance duration (load bearing capacity)


Design variant in accordance to	Fire resistance period (load bearing capacity) in minutes
Fig. 28	120
Fig. 29	120
Fig. 30	120
Fig. 31	60
Fig. 32	60

Schöck Isokorb[®] with concrete compression elements

Performance parameters Load bearing capacity in case of fire


Page 25 of European Technical Assessment ETA-17/0261 of 9 February 2021

Page 26 of European Technical Assessment ETA-17/0261 of 9 February 2021

C.2.2 Resistance to fire of building elements (informative)

Floor or roof structures as well as balcony and walkways connected to reinforced concrete components with Schöck lsokorb® as per the intended use can be classified as specified in Table C.10 in terms of fire resistance in accordance with EN 13501-2, see Annex C5 and C6. The following boundary conditions must be observed:

- The load-bearing capacity in case of fire has been declared for the Schöck lsokorb®.
- See Annex C4, bullet 1 to 3 and Table C.8.
- Connections of the remaining edges of floor or roof structures, which are not connected with the Schöck lsokorb[®] to adjacent or supporting components, shall be verified in accordance with the provisions of the Member States for the corresponding fire resistance.

Table C.10: Component classification

Design variant	Floor or roof construction with fire separating function	Balcony and walkway
Fig. 28	REI 120	R 120
Fig. 29	REI 120	R 120
Fig. 30	REI 120	R 120
Fig. 31	REI 60	R 60
Fig. 32	REI 60	R 60

Schöck Isokorb[®] with concrete compression elements

Classification of building element (informative) Fire resistance

C.3 Thermal resistance

The equivalent thermal resistance $R_{eq,TI}$ of Schöck Isokorb[®] is determined according to EN ISO 6946 and EN ISO 10211 by using finite element method and a detailed 3D model of the thermal insulation element for the configuration shown in Fig. 33:

$$R_{cal} = R_{eq,TI} + R_{con}$$

$$R_{eq,TI} = R_{cal} - R_{con} = R_{cal} - \frac{0,06 \ m}{2,3 \ W/(m * K)}$$

$$\lambda_{eq,TI} = \frac{d_{n,TI}}{R_{eq,TI}}$$

with

R_{cal} calculated thermal resistance for configuration shown in Fig. 33

 $R_{\mbox{\scriptsize eq},\mbox{\scriptsize TI}}$ equivalent thermal resistance of thermal insulation element

R_{con} thermal resistance of concrete block

dn,Ti nominal thickness of thermal insulation element

 $\lambda_{\text{eq,TI}}$ equivalent thermal conductivity of thermal insulation element

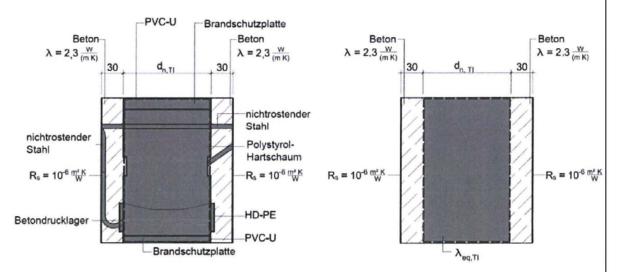


Fig. 33: cross section of configuration to calculate the equivalent thermal resistance $R_{eq,TI}$ and simplified analogous model $\lambda_{eq,TI}$

The design thermal conductivities of the components are given in Table C.11.

Schöck Isokorb[®] with concrete compression elements

Performance parameters Thermal resistance

Table C.11: Used materials and their design thermal conductivity

Material	Design thermal Conductivity λ [W/(m*K)]	Source of data
Ultra-High-Performance	According to technical	Determined according to
Concrete	documentation	EN 12664 and EN ISO 10456
Rigid polystyrene foam (EPS)	0,031	Determined according to EN ISO 13163 and EN ISO 10456
Stainless steel	13-15	According to EN 10088-1
PE-HD	0,5	According to EN ISO 10456
PVC-U	0,17	According to EN ISO 10456
Fire protection plate	According to technical documentation	According to EN ISO 12664 and EN ISO 10456

Schöck Isokorb[®] with concrete compression elements

Performance parameters Thermal resistance

D.1 Structural analysis

D.1.1 General

- EN 1992-1-1 and EN 1993-1-1 shall apply to design and structural analysis (in the joint)
- Structural verification shall be performed for each individual case
- Type-tested design tables may be used

Determining of the initial forces:

- Only with linear-elastic analysis
- Analysis with redistribution, plastic analysis and non-linear analysis may not be used
- The principles for the design of frameworks in accordance with EN 1992-1-1 section 5.6.4 shall be used
- Strut-and-tie models in accordance with Annex D3 and D4 with z = z_{strut-and-tie}
- Internal forces M_{Ed} and V_{Ed} shall be applied on the reference axis
- Shear reinforcements only receive tensile forces
- Variable moments and shear forces along the slab edges shall be taken into account (see section B.1.1)
- The shear force reinforcement required in the insulation layer does not determine the minimum slab thickness in accordance with EN 1992-1-1, section 9.3.2(1)

On-site vertical reinforcement on the adjacent surfaces facing the insulation of the components:

- The required vertical reinforcement results from the supporting and splitting tensile reinforcement, whereby at least a subsidiary structural edge reinforcement in accordance with section B.2.2 shall be provided

S ... splitting reinforcement

A – Supporting reinforcement

A supporting reinforcement is needed on the balcony side, if the number of the compression or tension elements is higher than the number of the shear bars. The required supporting reinforcement (and subsidiary structural edge reinforcement) covers the entire height up to the tension chord of the connected component.,

positive shear forces (directed downwards): negative shear forces (directed upwards):

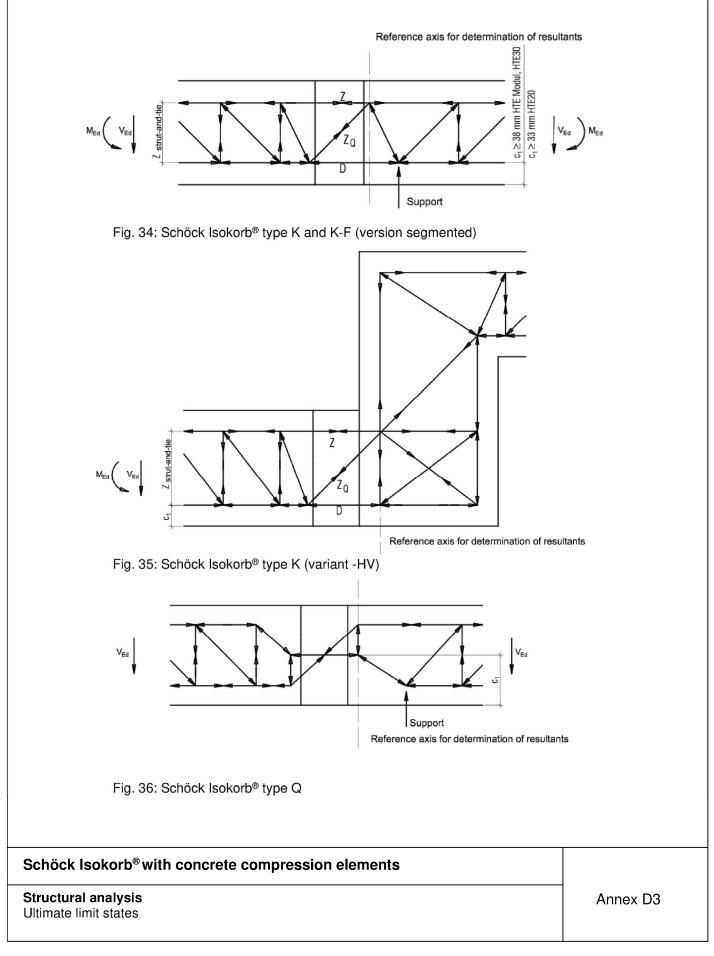
$$\begin{array}{lll} A = \frac{V_{Ed}}{f_{yd}} \cdot \left(1 - \frac{n_Q \cdot Stab(+)}{n_{CE}}\right) \text{ where } & \frac{n_Q \cdot Stab(+)}{n_{CE}} \leq 1 \\ \text{where:} \\ A & \dots & \text{required supporting reinforcement} \\ n_Q \cdot Stab & \dots & \text{number of positive (+) or negative (-) shear force bars} \\ n_{CE} & \dots & \text{number of compression elements} \\ n_{ZS} & \dots & \text{number of tension elements} \\ N_{Ed} & \dots & \text{total acting shear force} \end{array}$$

Schöck Isokorb[®] with concrete compression elements

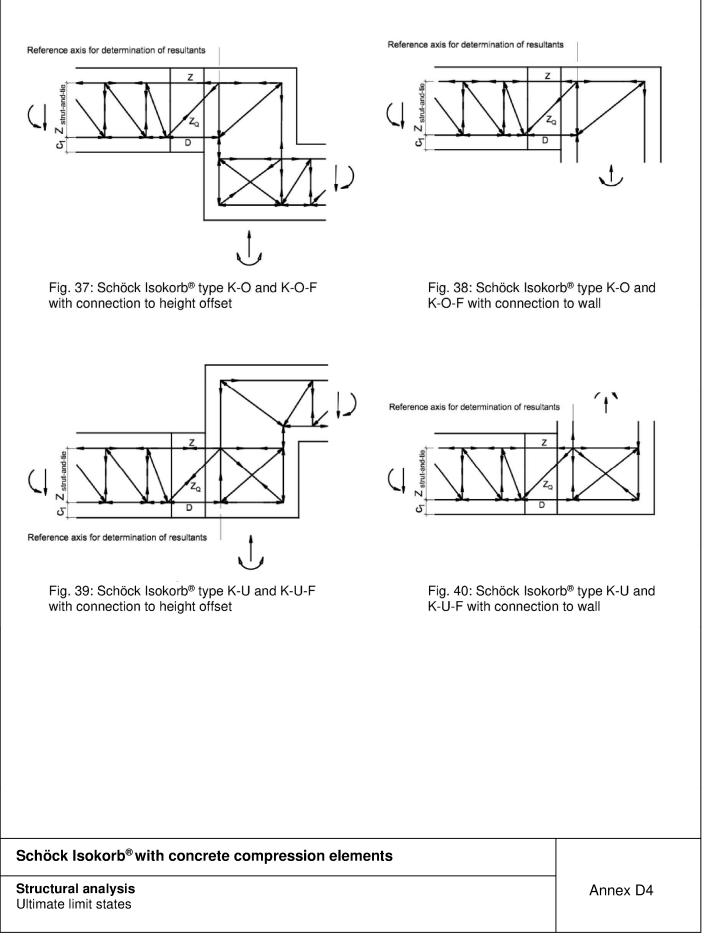
Structural analysis General

Annex D1

Page 31 of European Technical Assessment ETA-17/0261 of 9 February 2021


English translation prepared by DIBt

 <u>S – splitting reinforcement</u> 		
 Balcony side: 		
$Z_{Sd} = 0.25 \cdot D_{Ed} \left(1 - \frac{a}{2 \cdot e^*}\right)$		
$S_{B} = \frac{Z_{Sd}}{f_{yd}}$		
where:		
 Z_{Sd} resultant splitting tensile force D_{Ed} orthogonal and cantered compression force acting on the subarea in accordance with Annex D3 and D4 a Side length of the subarea on which D_{Ed} is acting 20 mm for HTE20 30 mm for HTE30 and HTE Modul 		
e^* distance of the HTE to the nearest edge; $e^* = min$ (c. edge distance of the load resultants in accordance with Annex D3 and D4 h element height S _B required splitting reinforcement on the balcony side	;h-c ₁)	
• Floor side: $S_D = \begin{cases} 0 \text{ for direct support} \\ S_B \text{ for indirect support} \\ \text{where:} \\ S_D \dots & \text{required splitting reinforcement on the slab side} \end{cases}$		
 If the shear force is pointing up (lifting) or the compression chord is tension chord is underneath, the statements for the on-site vertical rein be analogously adapted for the contrary load transfer 		
- Inclusion as a vertical reinforcement:		
 Subsidiary structural edge reinforcement in accordance with section B.2.2 Lattice girders with a maximum distance of 100 mm from the insulation joint Special stirrups (inclusion for splitting tensile reinforcement) Vertical legs of the shear force bars for Isokorb[®] types K, K-F, K-O, K-U and K-HV if the axial edge distance between shear reinforcement and tension reinforcement ≤ 2cm 		
	1	
Schöck Isokorb [®] with concrete compression elements		
Structural analysis General	Annex D2	


Page 32 of European Technical Assessment ETA-17/0261 of 9 February 2021

Page 33 of European Technical Assessment ETA-17/0261 of 9 February 2021

D.1.2 Ultimate limit states

D.1.2.1 Verification of the compression members

- D.1.2.1.1 HTE Modul concrete compression bearing
 - Design value D_{Rd} in accordance with section C.1.2.1 and in consideration of section C.1.2.2
 - These design value also applies conservatively to HTE30 concrete compression bearings

D.1.2.1.2 HTE30 and HTE20 concrete compression bearings

- Design value of the compression bearing forces in accordance with section C.1.2.1 and in consideration of section C.1.2.3
- D.1.2.2 Verification of the tensile bars and shear force bars
 - Verification in accordance with EN 1993-1-4 and with design values in accordance with Table C.1
 - Load-bearing capacity of the welded joint between reinforcing steel and stainless reinforcing steel or round steel does not need to be performed separately

D.1.2.3 Shear force resistance in the area of the insulation joint

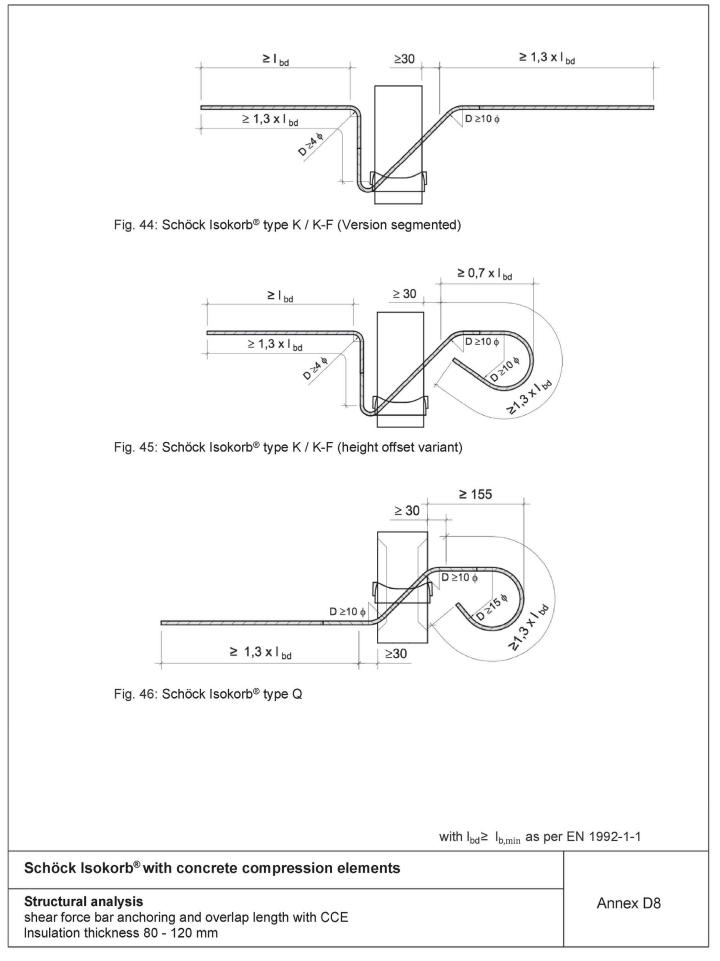
- force resistance of the connecting slabs shall be carried out in consideration of EN 1992-1-1, section 6.2
- The required verification of the mandrel diameter can be omitted if the following conditions are observed:
 - Mandrel diameter specifications given in Annexes B5, D6, D8 and D9
 - The shear force bar axis spacing on average in the center and to the free edge or the expansion is \ge 10 cm (section A.2).
- Axis spacing < 10 cm: verification of the necessary mandrel diameter in accordance
- with EN 1992-1-1, section 8.3 shall be provided
- D.1.2.4 Verification of the fatigue due to temperature difference
 - Verification through the limitation of the joint spacing in the external structural components in accordance with Table B.1

Schöck Isokorb[®] with concrete compression elements

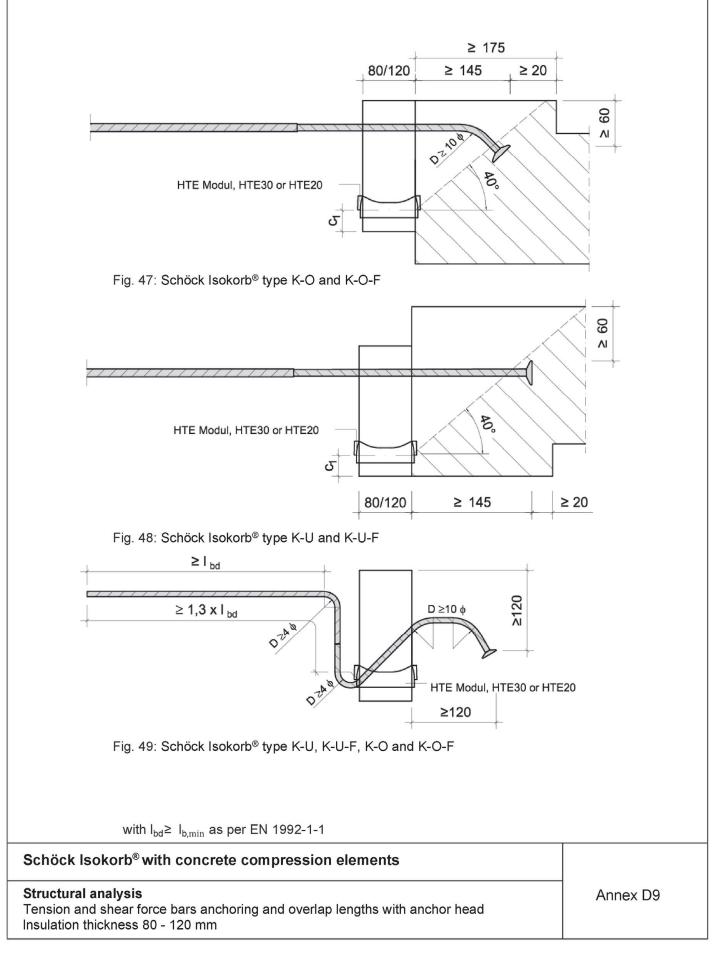
Structural analysis Ultimate limit states

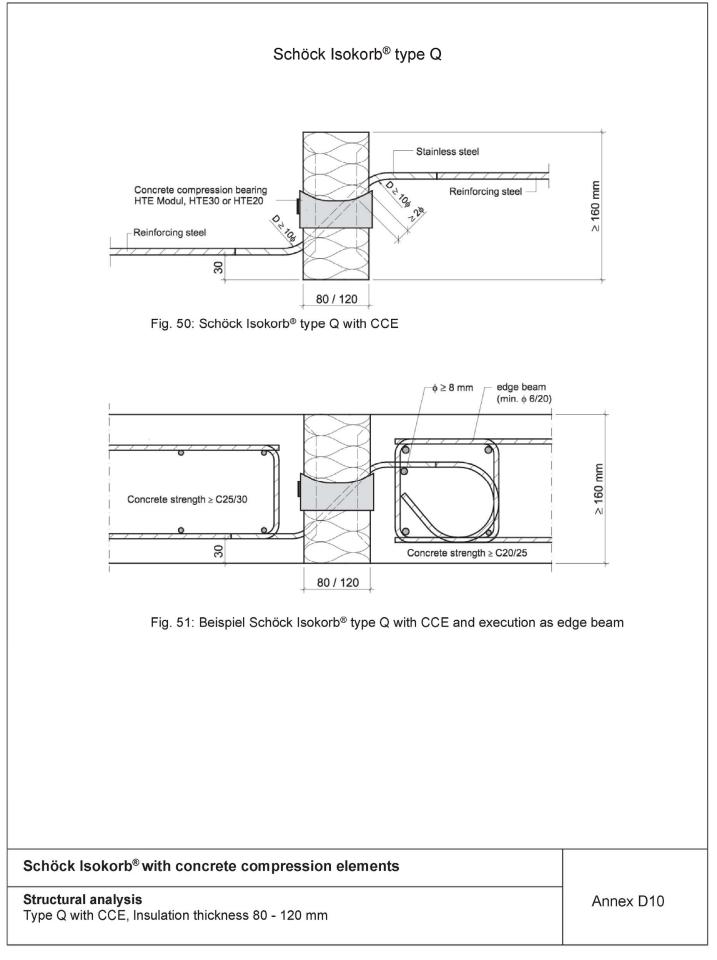
Annex D5

Page 35 of European Technical Assessment ETA-17/0261 of 9 February 2021



D.1.2.5 Provisions of the verifications in the load introduction area of the concrete co	omponents
 Shear force load-bearing capacity of the undisturbed slabs in ac EN 1992-1-1, section 6.2 A shear force distributed evenly across the concrete compression area slabsis, especially for the design value of the shear force load-bearing slabs without shear force reinforcement. Therefor the elements shall b uniform spacing The on-site stirrup reinforcement in the anchorage area (edge beam) whe and shear bars with anchor head according to Annex B7 and B8 shall I follows. A stirrup shall be arranged at least between two and next to the e or shear bars. The cross-section of the stirrups shall be designed taking i truss models in Annex D4 for the total acting longitudinal force of the ter force bars and may be taken into account for the static checks of the edge D.1.2.6 Anchorage lengths and overlap joints of the bars leading through the therma layer 	hall be taken as capacity of the e installed with en using tension be designed as external tension into account the asion and shear ge beam.
 Only ribbed steel can be taken into account for anchorage lengths and of The tensile bars shall be lapped to the tensile bars of the adjacent slabs With use of graduated tensile bars (see Annex A4) the increase in the over in accordance with Annex A4 Table A.1 shall be taken into account Anchorage of the shear force bars in the slabs in accordance with Annex higher values are not yielded in accordance with EN 1992-1-1, equation In cases in which shear force bars and compression members are not plat the anchorage length for shear force bars shall also be determined in the zone as in the tensile zone 	erlap length ∆l0 x D8, insofar as (8.10) iced on a plane,
Shear reinforcement in accordance with EN 1992-1-1, section 8.7.4.1 shall be overlap area of the bars at an axial distance > 20 mm and anchored to the resist the arising transverse tensile forces in addition to the shear re accordance with EN1992-1-1 section 8.7.4.	section edge to
Grading of the tensile reinforcement in the areas of the Schöck Isokork permitted.	${}^{\scriptscriptstyle (\!\! 8\!\!)}$ shall not be
Slab connections exclusively transfer shear forces:	
 The tensile reinforcement of the slab to be connected shall be an compression zone on the frontal side with hooks Alternatively, stirrups on every shear force bar or lattice girders, with girders, the tensile reinforcement must lie over the lower chords of the latt also section B.2.2) The version of the shear force bar in bent form shall be possible, if the specified in Annex D8 are implemented 	n use of lattice tice girders (see
chöck lsokorb [®] with concrete compression elements	
ructural analysis timate limit states	Annex D7


Page 37 of European Technical Assessment ETA-17/0261 of 9 February 2021


Page 38 of European Technical Assessment ETA-17/0261 of 9 February 2021

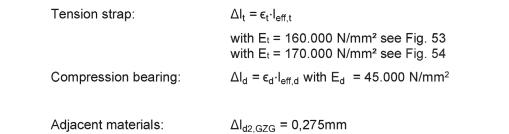
Page 39 of European Technical Assessment ETA-17/0261 of 9 February 2021

D.1.3 Serviceability limit states

- D.1.3.1 Control of cracking
 - EN 1992-1-1 section 7.3
 - No additional verification is required on the front faces of the joints or in the load introduction area if the provisions of this European technical assessment are complied with.
- D.1.3.2 Deflection control

In the calculation of the vertical deformations, the following influential factors shall be taken into account:

- Elastic deformations of the load-bearing thermal insulation element and of the adjacent slab concrete
- Thermal expansions


Verification of the deflections:

- Quasi-continuous combination in accordance with Annexes D12 and D13
- Model for determining the bending deformation in the joint in accordance with Annexes D12 and D13
- Calculation of the elastic deformations of the tension bars depending on the yield strength that can be applied (Table C.1)

Schöck lsokorb[®] with concrete compression elements

Structural analysis Serviceability limit states Annex D11

 $\Delta I_{d} = \Delta I_{d1} + \Delta I_{d2}$

Angle of rotation in the joint:

Compression flange:

 $\alpha_{Fuge} = (\Delta I_t + \Delta I_d)/z$

Reference axis for determination of internal forces

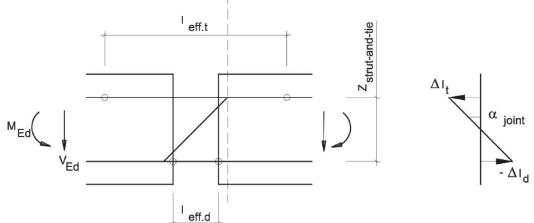
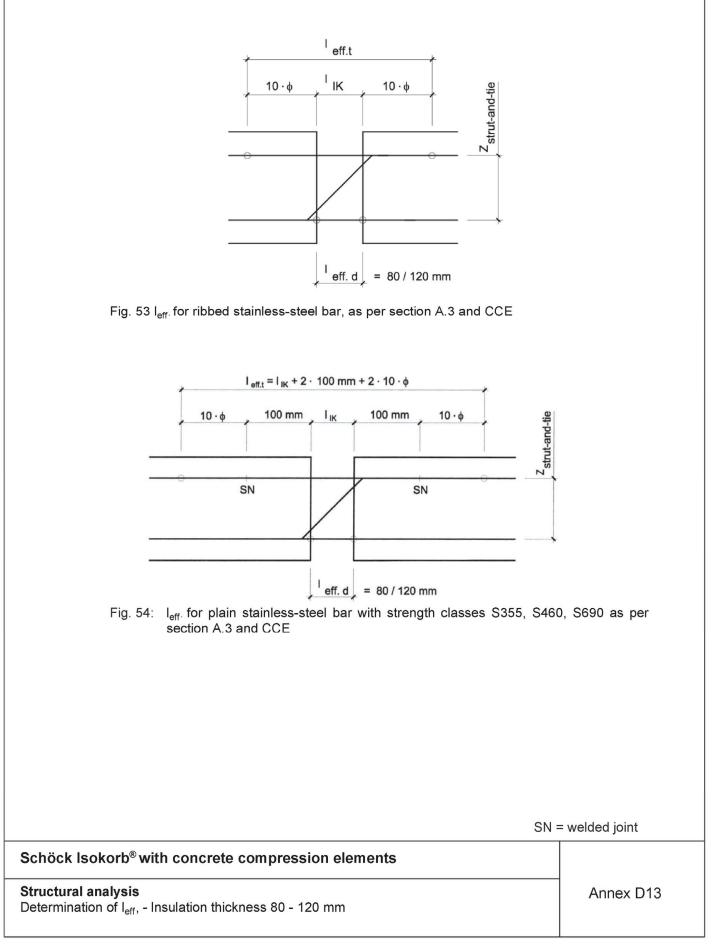


Fig. 52: Model for determining the bending deformation in the joint


Structural analysis

Model for determining the bending deformation in the joint insulation thickness 80 - 120 mm

Annex D12

Page 42 of European Technical Assessment ETA-17/0261 of 9 February 2021

