

REPORT

Thermal Break Technology for Various Construction Types

Presented to:

Dieter Hardock Product Manager North America

Schöck Bauteile GmbH Vimbucher Straße 2 76534 Baden-Baden, Germany

Report No. 5131042.00

August 1, 2014

M:\PROJ\5131042\REPORT\MH_REPORT 2014 JULY.DOCX

TABLE OF CONTENTS

1.	INTR	ODUCTIO	1			
2.	THEF	THERMAL ANALYSIS				
	2.1	Therma	al Transmittance	5		
		2.1.1	Cantilevered Concrete	5		
		2.1.2	Concrete Parapets	6		
		2.1.3	Steel to Steel Connection	7		
		2.1.4	Steel to Concrete Connection	8		
		2.1.5	Poured-in Place Concrete Wall to Floor Slab	8		
	2.2	Interior	Slab Surface Temperatures	9		
		2.2.1	Cantilevered Concrete	9		
		2.2.2	Concrete Parapet	10		
		2.2.3	Steel to Steel Connection	11		
		2.2.4	Steel to Concrete Connection	12		
		2.2.1	Poured-in Place Concrete Wall to Floor Slab	12		
3.	SUM	MARY		13		

- APPENDIX A: Material and Assembly Data Sheets
- APPENDIX B: Thermal Results Data Sheets
- APPENDIX C: Thermal Resistance Tables
- APPENDIX D: Design Condition Thermal Profiles

1. INTRODUCTION

Morrison Hershfield Ltd. (MH) was retained by Schöck Bauteile GmbH (Shoeck) to evaluate the thermal performance of their thermal break technology for a variety of common details. This report summarizes the predicted thermal performance of 18 different scenarios for various types of construction.

For this report, 5 types of details were examined:

- A. Steel stud assembly with a cantilevered concrete balcony
- B. Steel stud assembly at a concrete parapet and roof deck
- C. Structural steel beam penetration through a steel stud assembly
- D. Concrete floor slab to structural steel beam connection
- E. Interior insulated poured-in place concrete at wall to floor slab interface

Each of these detail groups consists of the conventional construction method alongside the comparative thermal break solution offered by Schöck. Several types of steel stud clear walls were used in the analysis of scenarios A-D and were exterior insulated, or split insulated (exterior and interior insulated) with horizontal or vertical clip cladding attachments. For the steel beam connection details C and D, additional thermal isolator pad solutions were also investigated alongside the Schöck solutions. Tables 1-5 summarize the assemblies modeled for this report. In the detail numbering, the suffixes denote the following:

CC – Conventional Construction

- **TI** Thermal Isolator Solution
- **SA** Schöck Assembly Solution

More information on each detail, including model dimensions, material properties and assembly images are shown in Appendix A. In addition, the thermal information in this report is also included in the *"Building Envelope Thermal Bridging Guide: Analysis, Applications and Insights"*¹, which contains methodology and a catalogue of details to assist designers in reducing thermal bridging in buildings. The Schöck details can be compared to a wider variety of similar types of construction details contained in the guide. Also included in the guide is a simple cost benefit analysis that includes construction costs and energy use/savings for a variety of design strategies, including scenarios utilizing Schöck products.

¹ Guide to be published in April, 2014

	Detail	Wall Assembly	Additional Detail Description
Conventional Construction		R-15 Exterior Insulated Steel Stud Assembly	 A01-CC: Without insulation at curb, continuous concrete projection A02-CC: With insulation at curb, continuous concrete projection
Manufactured Thermal Break (Isokorb CM20)		R-15 Exterior Insulated Steel Stud Assembly	 A03-SA: Without insulation at curb, Isokorb CM20 thermal break at concrete projection A04-SA: With insulation at curb, Isokorb CM20 thermal break at concrete projection
Conventional Construction		R-15/R-12 Split Insulated Steel Stud Assembly	 A05-CC: Without insulation at curb, continuous concrete projection A06-CC: With insulation at curb, continuous concrete projection
Manufactured Thermal Break (Isokorb CM20)		R-15/R-12 Split Insulated Steel Stud Assembly	 A07-SA: Without insulation at curb, Isokorb CM20 thermal break at concrete projection A08-SA: With insulation at curb, Isokorb CM20 thermal break at concrete projection

Table 1: Cantilevered Concrete Projections with Steel Stud Assemblies

	Detail	Wall Assembly	Detail
Conventional Construction		R-15/R-12 Split Insulated Steel Stud Assembly, R-20 Insulated Roof Deck	• B01-CC : Parapet insulated on exterior side only, continuous concrete parapet bypassing interior insulation
Manufactured Thermal Break (Isokorb AXT1)		R-15/R-12 Split Insulated Steel Stud Assembly, R-20 Insulated Roof Deck	• B02-SA : Parapet insulated on exterior side only, Isokorb AXT1 thermal break at roof insulation level

Table 2: Concrete Parapets with Concrete Roof Decks and Steel Stud Walls

 Table 3: Structural Steel Beam Penetrations through Steel Stud Walls

	Detail	Wall Assembly	Additional Detail Description
Conventional Construction		R-15/R-12 Split Insulated Steel Stud Assembly	• C01-CC : Uninterrupted steel beam
Thermal Isolator Pad		R-15/R-12 Split Insulated Steel Stud Assembly	 C02-TI: Steel beams separated by: 5 mm pad, stainless steel bolts 5 mm pad, steel bolts 5 mm pad, stainless steel bolts, with R-10 Insulation outboard of flanges 10 mm pad, stainless steel bolts 10 mm pad, steel bolts
Manufactured Thermal Break (Isokorb S22)		R-15/R-12 Split Insulated Steel Stud Assembly	• C03-SA : Steel Beam separated by Isokorb S22 thermal break

	Detail	Wall Assembly	Detail
Conventional Construction		R-15/R-12 Split Insulated Steel Stud Assembly	• D01-CC : Steel beam bypassing exterior insulation with direct connection to concrete
Thermal Isolator Pad		R-15/R-12 Split Insulated Steel Stud Assembly	• D02-TI : Steel beam bypassing exterior insulation with 10 mm isolator pad at slab connection
Manufactured Thermal Break (Isokorb KS14)		R-15/R-12 Split Insulated Steel Stud Assembly	• D03-SA :Steel beam outboard of exterior insulation with Isokorb KS14 thermal break at slab connection, in line with exterior insulation

Table 4: Structural Steel Beam Connections to Concrete Floor Slabs

 Table 5: Interior Insulated Concrete Walls at the Floor Slab Interface

	Detail	Wall Assembly	Detail
Conventional Construction		R-10 Interior Insulated Poured-in- Place Concrete	• E01-CC : Continuous concrete connection between wall and floor slab, bypassing insulation
Manufactured Thermal Break (Isokorb Rutherma DF)		R-10 Interior Insulated Poured-in- Place Concrete	• E02-SA : Concrete wall and floor slab connection with Isokorb Rutherma DF thermal break

2. THERMAL ANALYSIS

Thermal analysis was completed using 3D heat transfer software from Siemens called Nx. The analysis utilized steady-state conditions, published thermal properties of materials, and information provided by Schöck for their product. The objectives of the thermal analysis were:

- 1. Determine thermal transmittance (U-value, linear transmittance and point transmittance) for all the scenarios listed in Tables 1-5.
- 2. Provide temperature indices for all scenarios at locations of interest for evaluating the risk of condensation.

For more information regarding the assumptions used for thermal modeling see Appendix B.

2.1 Thermal Transmittance

The thermal performance for each assembly was analyzed using the methodology put forth by ASHRAE 1365-RP². Tables 6-11 show the thermal transmittance for each scenario. Each table contains the scenario reference, a brief description, the clear field U-value (thermal performance of the wall or roof away from the connection detail), the overall U-value of the modeled assembly, the linear or point transmittance of the connection detail and the percent reduction in heat loss. The percent reduction is based on the comparison between the linear or point transmittance of the detail and the conventional construction detail. More detailed results information for each scenario is given in Appendix B. R-value versions of the following Tables 6-11 are given in Appendix C.

2.1.1 Cantilevered Concrete

Table 6: Thermal Transmittance of Cantilevered Concrete Projections with Exterior Insulated

 Steel Stud Assemblies

Scenario		Description	Clear Wall U- value Btu/ft ² ·hr ·°F (W/m ² K)	Overall U- value Btu/ft ² ·hr ·°F (W/m ² K)	Ψ Btu/ft ∙hr •°F (W/mK)	% Reduction in Heat Loss	
ntional uction	A01-CC	Without insulation at curb	0.088 (0.50)	0.148 (0.84)	0.584 (1.011)	-	
Conve Constr	A02-CC	With insulation at curb	0.088 (0.50)	0.138 (0.78)	0.485 (0.840)	17%	
Manufactured Thermal Break (Isokorb CM20)	A03-SA	Without insulation at curb	0.088 (0.50)	0.115 (0.65)	0.261 (0.452)	55%	
	A04-SA	With insulation at curb	0.088 (0.50)	0.100 (0.57)	0.117 (0.203)	80%	

² Details of the model and calibration can be found in ASHRAE 1365-RP "Thermal Performance of Building Envelope Details for Mid- and High-Rise Construction", 2011

Scenario		Description	Clear Wall U-value Btu/ft ² ·hr ·°F (W/m²K)	Overall U- value Btu/ft ² ·hr ·°F (W/m ² K)	₩ Btu/ft ·hr ·°F (W/mK)	% Reduction in Heat Loss
ntional Jetion	A05-CC	Without insulation at curb	0.054 (0.31)	0.116 (0.66)	0.612 (1.059)	-
Conver Constru	A06-CC	With insulation at curb	0.054 (0.31)	0.108 (0.61)	0.528 (0.914)	14%
Manufactured Thermal Break (Isokorb CM20)	A07-SA	Without insulation at curb	0.054 (0.31)	0.087 (0.49)	0.319 (0.551)	48%
	A08-SA	With insulation at curb	0.054 (0.31)	0.073 (0.42)	0.189 (0.327)	69%

 Table 7: Thermal Transmittance of Cantilevered Concrete Projections with Exterior and Interior

 Insulated Steel Stud Assemblies

2.1.2 Concrete Parapets

 Table 8: Thermal transmittance of Concrete Parapets with Concrete Roof Decks and Steel Stud

 Walls

Scenario		Description	Clear Wall U- value Btu/tt² ·hr ·°F (W/m²K)	Clear Roof U-value Btu/ft ² ·hr ·°F (W/m ² K)	Overall U-value Btu/ft ² ·hr ·°F (W/m ² K)	₩ Btu/ft ·hr ·°F (W/mK)	% Reduction in Heat Loss
Conventional Construction	B01-CC	Continuous concrete parapet bypassing interior wall and roof insulation	0.053 (0.30)	0.046 (0.26)	0.104 (0.59)	0.396 (0.686)	-
Manufactured Thermal Break (Isokorb AXT1)	B02- SA	Concrete parapet and roof separated by AXT1 Thermal Break	0.053 (0.30)	0.046 (0.26)	0.058 (0.33)	0.058 (0.100)	87%

2.1.3 Steel to Steel Connection

Scenario		Description	Clear Wall U-value Btu/ft ² ·hr ·°F (W/m ² K)	Overall U- value Btu/ft ² ·hr ·°F (W/m ² K)	X Btu/hr ·°F (W/K)	% Reduction in Heat Loss
Conventional Construction	C01-CC	Uninterrupted steel beam	0.054 (0.31)	0.146 (0.83)	1.73 (0.92)	-
		5 mm isolator pad, stainless steel bolts	0.054 (0.31)	0.167 (0.95)	2.17 (1.15)	-26%
	C02-TI	5 mm isolator pad, steel bolts	0.054 (0.31)	0.170 (0.97)	2.24 (1.19)	-30%
ator Pad		5 mm pad, stainless steel bolts, R-10 outboard of flanges	0.054 (0.31)	0.156 (0.89)	1.80 (1.03)	-12%
al Isola		10 mm isolator pad, stainless steel bolts	0.054 (0.31)	0.150 (0.85)	1.82 (0.97)	-5%
Therm		10 mm isolator pad, steel bolts	0.054 (0.31)	0.153 (0.87)	1.89 (1.00)	-9%
		19 mm isolator pad, steel bolts	0.054 (0.31)	0.145 (0.82)	1.71(0.91)	1%
		25 mm isolator pad, steel bolts	0.054 (0.31)	0.140 (0.80)	1.61(0.86)	7%
Manufactured Thermal Break (Isokorb S22)	C03-SA	Steel beam separated by Isokorb S22 thermal break	0.054 (0.31)	0.107 (0.61)	0.91 (0.48)	48%

Table 9: Thermal transmittance of Structural Steel Beam Penetrations through Steel Stud Walls

2.1.4 Steel to Concrete Connection

Scenario		Description	Clear Wall U-value Btu/ft² ·hr ·°F (W/m²K)	Overall U- value Btu/ft²·hr·°F (W/m²K)	X Btu/hr ·°F (W/K)	% Reduction in Heat Loss
Conventional Construction	D01-CC	Steel beam bypassing exterior insulation	0.07 (0.41)	0.137 (0.78)	1.24 (0.66)	-
Thermal Isolator Pad	D02-TI	10mm Isolator pad between steel beam and concrete	0.07 (0.41)	0.121 (0.69)	0.91 (0.48)	27%
Manufactured Thermal Break (Isokorb KS14)	D03-SA	Isokorb KS14 thermal break between steel beam and concrete	0.07 (0.41)	0.082 (0.47)	0.07 (0.04)	94%

Table 10: Therma	I transmittance of Struct	ural Steel Beam Connec	tions to Concrete Floor Slabs

2.1.5 Poured-in Place Concrete Wall to Floor Slab

	Table 11:	Thermal trar	nsmittance of	Interior Insulated	d Concrete Walls	s at the Floor Sla	b Interface
--	-----------	--------------	---------------	--------------------	------------------	--------------------	-------------

Scenario		Description	Clear Wall U-value Btu/ft ² ·hr ·°F (W/m²K)	Overall U- value Btu/ft ² ·hr ·°F (W/m ² K)	₩ Btu/ft ·hr ·°F (W/mK)	% Reduction in Heat Loss
Conventional Construction	E01-CC	Continuous concrete floor to wall connection, bypassing interior insulation	0.082 (0.47)	0.134 (0.76)	0.447 (0.773)	_
Manufactured Thermal Break (Isokorb Rutherma DF)	E02-SA	Concrete wall and floor separated by Rutherma DF Thermal Break	0.082 (0.47)	0.103 (0.58)	0.179 (0.310)	60%

2.2 Interior Slab Surface Temperatures

Temperature indices are noted for key locations for evaluating of the risk of condensation. The indices are in non-dimensionalized format between 0 and 1 (0 representing the exterior temperature, 1 representing the interior temperature) so they can be applicable to any temperature difference. Further information on the temperature indices are given in Appendix B. Along with the temperature indices, surface temperatures are given for the following design conditions, which are conditions representative of a cold climate:

- Exterior temperature: -18°C
- Interior Temperature: 21ºC
- Indoor Relative Humidity: 35%
- Indoor Dewpoint: 5°C

The lowest temperature indices for the concrete/beam surfaces exposed to interior air conditions were found for each scenario. Note that for fully exterior insulated assemblies, it was assumed that the vapour barrier is at the plane of the sheathing, while with the insulated stud cavities, the vapour barrier was assumed to be at the plane of the interior gypsum. The key location for evaluating the risk of condensation was assumed to be at the vapour barrier. Concrete/beam temperature indices and subsequent surface temperatures are given in Tables 12-17 for each scenario along with an indication if the assembly meets the representative cold climate design conditions for condensation resistance. Locations and other temperature indices are shown with each results data sheet in Appendix B. 2-D section temperature profiles for each scenario under the same example design conditions are given in Appendix D.

2.2.1 Cantilevered Concrete

Table 12: Coldest Temperature on the Concret	te Floor at the Vapour Barrier for Cantilevered
Concrete Projections with Exterior	Insulated Steel Stud Assemblies

Scenario		Description	Coldest Interior Concrete Surface Temperature Index	Concrete Temperature at Example Design Conditions (-18°C Exterior & 21°C Interior)	Critical RH % at 21°C based on Concrete Temperature
ntional uction	A01-CC	Without insulation at curb	0.45	-1	23%
Conver Constru	A02-CC	With insulation at curb	0.57	4	33%
ctured Break CM20)	A03-SA	Without insulation at curb	0.60	5	36%
Manufa Thermal (Isokorb	A04-SA	With insulation at curb	0.77	12	57%

Table	13: Coldest T	emperature	on the Co	oncrete Flo	or at the '	Vapour	Barrier for	Cantilevered
	Concrete Pro	jections with	Exterior a	and Interio	r Insulate	d Steel	Stud Asse	mblies

Scenario		Description	Coldest Interior Concrete Surface Temperature Index	Concrete Temperature at Example Design Conditions (-18°C Exterior & 21°C Interior)	Critical RH % at 21°C based on Concrete Temperature
ntional uction	A05-CC	Without insulation at curb	0.64	7	41%
Conve Constr	A06-CC	With insulation at curb	0.70	9	47%
actured al Break CM20)	A07-SA	Without insulation at curb	0.77	12	57%
Manufo Thermo (Isokorb	A08-SA	With insulation at curb	0.85	15	69%

2.2.2 Concrete Parapet

 Table 14: Coldest Temperature on Concrete Ceiling for Concrete Parapets with Concrete Roof

 Decks and Steel Stud Walls

Scenario		Description	Coldest Interior Concrete Surface Temperature Index	Concrete Temperature at Example Design Conditions (-18°C Exterior & 21°C Interior)	Critical RH % at 21°C based on Concrete Temperature
Conventional Construction	B01-CC	Continuous concrete parapet bypassing interior and roof insulation	0.69	9	47%
Manufactured Thermal Break (Isokorb AXT1)	B02- SA	Concrete parapet and roof separated by AXT1 Thermal Break	0.90	17	79%

2.2.3 Steel to Steel Connection

Scenario		Description	Temperature Index	Beam Temperature at Example Design Conditions (-18°C Exterior & 21°C Interior)	Critical RH % at 21°C based on Beam Surface Temperature		
Conventional Construction	C01-CC	Uninterrupted steel beam	0.52	2	29%		
		5 mm isolator pad, stainless steel bolts	0.33	-5	17%		
	C02-TI	5 mm isolator pad, steel bolts	0.32	-5	17%		
ator Pad		C02-TI		5 mm pad, stainless steel bolts, R-10 outboard of flanges	0.39	-3	20%
nal Isol			10 mm isolator pad, stainless steel bolts	0.42	-2	21%	
Therr			10 mm isolator pad, steel bolts	0.41	-2	21%	
		19 mm isolator pad, steel bolts	0.48	1	27%		
		25 mm isolator pad, steel bolts	0.51	2	29%		
Manufactured Thermal Break (Isokorb 522)	C03-SA	Steel beam separated by Isokorb S22 thermal break	0.79	13	61%		

Table 15: Coldest Temperature on Steel Beam at Vapour Barrier for Structural Steel Beam

 Connections to Concrete Floor Slabs

2.2.4 Steel to Concrete Connection

Scenario		Description	Temperature Index	Concrete Temperature at Example Design Conditions (-18°C Exterior & 21°C Interior)	Critical RH % at 21°C based on Concrete Surface Temperature
Conventional Construction	D01-CC	Steel beam bypassing exterior insulation	0.40	-2	21%
Thermal Isolator Pad	D02-TI	10mm Isolator pad between steel beam and concrete	0.54	3	31%
Manufactured Thermal Break (Isokorb KS14)	D03-SA	lsokorb KS14 thermal break between steel beam and concrete	0.84	15	70%

Table 16: Coldest Temperature on the Concrete Floor for Structural Steel Beam Connections to Concrete Floor Slabs

2.2.1 Poured-in Place Concrete Wall to Floor Slab

Table 17: Coldest Temperature on the Concrete Floor at the Vapour Barrier for Interior

 Insulated Concrete Walls

Scenario		Description	Temperature Index	Concrete Temperature at Example Design Conditions (-18°C Exterior & 21°C Interior)	Critical RH % at 21°C based on Concrete Surface Temperature
Conventional Construction	E01-CC	Continuous concrete floor to wall connection, bypassing interior insulation	0.57	4	33%
Manufactured Thermal Break (Rutherma DF)	E02-SA	Concrete wall and floor separated by Rutherma DF Thermal Break	0.70	9	47%

3. SUMMARY

The Schöck products evaluated in this study demonstrate effective solutions to minimize the impact of thermal bridging at common interface details. The Schöck solutions provide significant improvements in reducing the thermal transmittance and risk of condensation compared to current common practice.

Continuous concrete slab projections have very high linear transmittances. The Schöck Isokorb CM20 can reduce that heat loss by a large amount, but by how much depends on the detailing. For the scenario without insulation at the curb, there is a gap in the insulation between the Isokorb system and the exterior insulation, and the linear transmittance is reduced by over 50%. When there is insulation at the curb, the linear transmittance is reduced by almost 80%. This highlights the importance of a holistic approach for reducing thermal bridging and how a small amount of insulation can make a difference if the large thermal bridges are dealt with using products like the Isokorb system.

The concrete parapets can also result in a large amount of heat loss, especially in low-rise buildings. With the Schöck AXT1 system, the heat loss is reduced by over 85% compared to common practice. Moreover, the AXT1 system is likely cheaper and more effective to use the AXTI system than wrapping the entire parapet in insulation. The AXT1 system is more effective, and has lower linear transmittance than a fully insulated parapet tall parapet, because the geometric thermal bridge is eliminated with the AXT1 system. A geometric thermal bridge for a fully insulated parapet is a result of heat flowing to the parapet and increased surface area exposed to the exterior. A direct comparable parapet was not evaluated as part of this study but examples of fully insulated parapets are included in the Thermal Bridging Guide, which also includes construction cost comparisons. The following graphics illustrate the difference between a parapet with AXT1 and a fully insulated parapet. Note the clear wall assemblies are slightly different.

Figure 1. A parapet with the AXT1 system. The roof insulation is carried to the exterior insulation at the same level via the AXT1 system. The parapet is cold (blue),indicating less heat flow and a more efficient system.

Figure 2. A parapet with the insulation wrapped around the parapet structure. The parapet is warm (green), indicating more heat flow and a less efficient system.

Steel beams penetrating the envelope may be a concern with heat loss. However, a greater concern is often the risk of condensation at cold surfaces. For the evaluated scenarios, the isolator pads did not provide an effective solution. This is partially because of the assumed

large flanges on the beams that are required to support cantilevered beams. This detail results in less insulation around the beam and increased conductive area (fin effect) at the connection. The other reason is that the isolator pads provide little thermal resistance to overcome the increased conductive area created by the flanges at the connection. The heat flow is reduced by almost 50% using the Isokorb S22 system for the same assumptions as the isolator pads. Moreover, the risk of condensation is minimized with the Isokorb S22 system. The Isokorb S22 system is effective because the thermal break is much thicker, provides effective thermal resistance, and aligns with the exterior insulation around it.

With the steel beam to concrete floor connection, the isolator pads reduce the heat flow by almost 30% compared to over 90% for the Isokorb KS14 system. The risk of condensation is also greatly reduced with the Isokorb KS14 system. In comparison the benefit of the isolator pads is marginal. It is also important to recognize that the thermally broken steel beams appear to offer significant reductions in heat flow for balcony applications than the thermally broken cantilevered concrete solution (Isokorb CM20).

The interior insulated concrete wall at the floor slab interface is a major source of heat loss, on par with continuous concrete balconies. With the Schöck Rutherma DF, the thermal transmittance is reduced by over 60% compared to common construction. Other options to minimize thermal bridging at the floor slabs is to insulate outboard of the concrete structure and/or utilize precast concrete assemblies that are insulated at the floor slab. In comparison, these options are a larger deviation from this common construction practice than for the Rutherma DF system. The Rutherma DF system is a solution that has the potential to integrate into interior insulated poured-in-place concrete construction and make the insulation effective, which is not current practice for this type of construction.

Finally, readers should recognize that the Schöck products in this report were evaluated strictly in terms of thermal performance. There are other considerations that designers need to consider alongside thermal performance, such as structural requirements. Schöck has technical manuals that have been developed for these purposes.

Yours truly,

Morrison Hershfield Limited

Neil Norris, M.A.Sc. Building Science Consultant

Patrick Roppel, P.Eng. Building Science Specialist

APPENDIX A: Material and Assembly Data Sheets

Detail A01-CC Exterio Assemiciaddir

Exterior Insulated 3 5/8" x 1 5/8" Steel Stud (16" o.c.) Wall Assembly with Horizontal Z-girts (24" o.c.) Supporting Metal Cladding – Uninsulated Concrete Slab Intersection with Uninsulated Curb

Balcony Stepdown Detail

ID	Component	Thickness Inches (mm)	Conductivity Btu·in / ft ² ·hr·°F (W/m K)	Nominal Resistance hr·ft ² ·°F/Btu (m²K/W)	Density Ib/ft ³ (kg/m³)	Specific Heat Btu/lb·°F (J/kg K)
1	Interior Film (right side) ¹	-	-	R-0.6 (0.11 RSI) to R-0.9 (0.16 RSI)	-	-
2	Gypsum Board	1/2" (13)	1.1 (0.16)	R-0.5 (0.08 RSI)	50 (800)	0.26 (1090)
3	3 5/8" x 1 5/8" Steel Studs with Top and Bottom Tracks	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)
4	Air Cavity	3 5/8" (92)	-	R-0.9 (0.16 RSI)	0.075 (1.2)	0.24 (1000)
5	Exterior Sheathing	1/2" (13)	1.1 (0.16)	R-0.5 (0.09 RSI)	50 (800)	0.26 (1090)
6	Horizontal Z-Girt with 1 1/2" Flange	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)
7	Exterior Insulation	3" (76)	-	R-15 (2.64 RSI)	1.8 (28)	0.29 (1220)
8	Panel Clip	14 Gauge	430 (62)	-	489 (7830)	0.12 (500)
9	Metal Cladding with	n 1/2" vented airs	pace incorporated	into exterior heat transfer of	oefficient	
10	Concrete Slab	8" (204)	12.5 (1.8)	-	140 (2250)	0.20 (850)
11	Exterior Film (left side) ¹	-	-	R-0.2 (0.03 RSI) to R-0.7 (0.12 RSI)	-	-

Exterior Insulated 3 5/8" x 1 5/8" Steel Stud (16" o.c.) Wall Assembly with Horizontal Z-girts (24" o.c.) Supporting Metal Cladding – Uninsulated Concrete Slab Intersection with **Detail A02-CC** Insulated Curb 40611:4" 3 2 4 525 [5'-0" 5 6 7 254 [10"] 8 11) *813 12'-8"]+ (10 **Balcony Stepdown Detail** 970 [3'-2"] £610 [2'-0"] 9

*813 12'-8"]+

ID	Component	Thickness Inches (mm)	Conductivity Btu·in / ft ² ·hr·°F (W/m K)	Nominal Resistance hr·ft ² ·°F/Btu (m²K/W)	Density Ib/ft ³ (kg/m³)	Specific Heat Btu/lb·⁰F (J/kg K)
1	Interior Film (right side) ¹	-	-	R-0.6 (0.11 RSI) to R-0.9 (0.16 RSI)	-	-
2	Gypsum Board	1/2" (13)	1.1 (0.16)	R-0.5 (0.08 RSI)	50 (800)	0.26 (1090)
3	3 5/8" x 1 5/8" Steel Studs with Top and Bottom Tracks	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)
4	Air Cavity	3 5/8" (92)	-	R-0.9 (0.16 RSI)	0.075 (1.2)	0.24 (1000)
5	Exterior Sheathing	1/2" (13)	1.1 (0.16)	R-0.5 (0.09 RSI)	50 (800)	0.26 (1090)
6	Horizontal Z-Girt with 1 1/2" Flange	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)
7	Exterior Insulation	3" (76)	-	R-15 (2.64 RSI)	1.8 (28)	0.29 (1220)
8	Panel Clip	14 Gauge	430 (62)	-	489 (7830)	0.12 (500)
9	Metal Cladding with	n 1/2" vented airs	pace incorporated	into exterior heat transfer of	oefficient	
10	Concrete Slab	8" (204)	12.5 (1.8)	-	140 (2250)	0.20 (850)
11	Curb Insulation	3" (76)	-	R-15 (2.64 RSI)	1.8 (28)	0.29 (1220)
12	Exterior Film (left side) ¹	-	-	R-0.2 (0.03 RSI) to R-0.7 (0.12 RSI)	-	-

ID	Component	Thickness Inches (mm)	Conductivity Btu·in / ft ² ·hr·°F (W/m K)	Nominal Resistance hr·ft ^{2.} °F/Btu (m²K/W)	Density Ib/ft³ (kg/m³)	Specific Heat Btu/Ib·°F (J/kg K)
1	Interior Films (right side) ¹	-	-	R-0.6 (0.11 RSI) to R-0.9 (0.16 RSI)	-	-
2	Gypsum Board	1/2" (13)	1.1 (0.16)	R-0.5 (0.08 RSI)	50 (800)	0.26 (1090)
3	3 5/8" x 1 5/8" Steel Studs with Top and Bottom Tracks	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)
4	Air Cavity	3 5/8" (92)	-	R-0.9 (0.16 RSI)	0.075 (1.2)	0.24 (1000)
5	Exterior Sheathing	1/2" (13)	1.1 (0.16)	R-0.5 (0.09 RSI)	50 (800)	0.26 (1090)
6	Horizontal Z-girts w/ 1 1/2" Flange	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)
7	Exterior Insulation	3" (76)	-	R-15 (2.64 RSI)	1.8 (28)	0.29 (1220)
8	Metal Cladding with	n 1⁄2" vented airs	pace incorporated	into exterior heat transfer c	oefficient	
9	Concrete Slab	8" (203)	12 (1.8)	-	140 (2250)	0.20 (850)
10	Stainless Steel Rebar	-	118 (17)	-	500 (8000)	0.12 (500)
11	HDPE Plastic Sleeve	-	1.7 (0.25)	-	59 (950)	0.48 (2000)
	UHPC Concrete Mix	-	5.5 (0.80)	-	140 (2250)	0.20 (850)
12	Polystyrene Hard Foam Insulation	3" (76)	0.217 (0.031)	R-14.7 (2.58 RSI)	66 (1060)	0.35 (1500)
13	Cement Board	1/2" (13)	1.7 (0.25)	-	72 (1150)	0.20 (850)
14	Exterior Film (left side) ¹	-	-	R-0.2 (0.03 RSI) to R-0.7 (0.12 RSI)	-	-

Detail A04-SA

Exterior Insulated 3 5/8" x 1 5/8" Steel Stud (16" o.c.) Wall Assembly with Horizontal Z-girts (24" o.c.) Supporting Metal Cladding – Isokorb CM20 Thermally Broken Slab Projection with Insulated Curb

Thermally Broken Slab Detail (Isokorb CM20)

ID	Component	Thickness Inches (mm)	Conductivity Btu·in / ft ² ·hr·°F (W/m K)	Nominal Resistance hr⋅ft².ºF/Btu (m²K/W)	Density Ib/ft³ (kg/m³)	Specific Heat Btu/Ib·°F (J/kg K)
1	Interior Films (right side) ¹	-	-	R-0.6 (0.11 RSI) to R-0.9 (0.16 RSI)	-	-
2	Gypsum Board	1/2" (13)	1.1 (0.16)	R-0.5 (0.08 RSI)	50 (800)	0.26 (1090)
3	3 5/8" x 1 5/8" Steel Studs with Top and Bottom Tracks	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)
4	Air Cavity	3 5/8" (92)	-	R-0.9 (0.16 RSI)	0.075 (1.2)	0.24 (1000)
5	Exterior Sheathing	1/2" (13)	1.1 (0.16)	R-0.5 (0.09 RSI)	50 (800)	0.26 (1090)
6	Horizontal Z-girts w/ 1 1/2" Flange	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)
7	Exterior Insulation	3" (76)	-	R-15 (2.64 RSI)	1.8 (28)	0.29 (1220)
8	Metal Cladding with	n ½" vented airs	pace incorporated	into exterior heat transfer c	oefficient	
9	Concrete Slab	8" (203)	12 (1.8)	-	140 (2250)	0.20 (850)
10	Stainless Steel Rebar	-	118 (17)	-	500 (8000)	0.12 (500)
11	HDPE Plastic Sleeve	-	1.7 (0.25)	-	59 (950)	0.48 (2000)
11	UHPC Concrete Mix	-	5.5 (0.80)	-	140 (2250)	0.20 (850)
12	Polystyrene Hard Foam Insulation	3 1/8" (80)	0.217 (0.031)	R-14.7 (2.58 RSI)	66 (1060)	0.35 (1500)
13	Cement Board	1/2" (13)	1.7 (0.25)	-	72 (1150)	0.20 (850)
14	Curb Insulation	3" (76)	-	R-15 (2.64 RSI)	1.8 (28)	0.29 (1220)
15	Exterior Film (left side) ¹	-	-	R-0.2 (0.03 RSI) to R-0.7 (0.12 RSI)	-	-

d from table 1, p. 26.1 of 2009 ASHRAE Handbook Fundamentals depending on surface orientation

Detail A05-CC

Exterior and Interior Insulated 3 5/8" x 1 5/8" Steel Stud (16" o.c.) Wall Assembly with Horizontal Z-girts (24" o.c.) Supporting Metal Cladding – Uninsulated Concrete Slab Intersection with Uninsulated Curb

Balcony Stepdown Detail

ID	Component	Thickness Inches (mm)	Conductivity Btu·in / ft ² ·hr·°F (W/m K)	Nominal Resistance hr·ft ² ·°F/Btu (m²K/W)	Density Ib/ft ³ (kg/m³)	Specific Heat Btu/lb·⁰F (J/kg K)		
1	Interior Film (right side) ¹	-	-	R-0.6 (0.11 RSI) to R-0.9 (0.16 RSI)	-	-		
2	Gypsum Board	1/2" (13)	1.1 (0.16)	R-0.5 (0.08 RSI)	50 (800)	0.26 (1090)		
3	3 5/8" x 1 5/8" Steel Studs with Top and Bottom Tracks	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)		
4	Fiberglass Batt Insulation	3 5/8" (92)	0.29 (0.044)	R-12 (2.11 RSI)	0.9 (14)	0.17 (710)		
5	Exterior Sheathing	1/2" (13)	1.1 (0.16)	R-0.5 (0.09 RSI)	50 (800)	0.26 (1090)		
6	Horizontal Z-Girt with 1 1/2" Flange	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)		
7	Exterior Insulation	3" (76)	-	R-15 (2.64 RSI)	1.8 (28)	0.29 (1220)		
8	Panel Clip	14 Gauge	430 (62)	-	489 (7830)	0.12 (500)		
9	Metal Cladding with 1/2" vented airspace incorporated into exterior heat transfer coefficient							
10	Concrete Slab	8" (204)	12.5 (1.8)	-	140 (2250)	0.20 (850)		
11	Exterior Film (left side) ¹	-	-	R-0.2 (0.03 RSI) to R-0.7 (0.12 RSI)	-	-		

Detail A06-CC

Exterior and Interior Insulated 3 5/8" x 1 5/8" Steel Stud (16" o.c.) Wall Assembly with Horizontal Z-girts (24" o.c.) Supporting Metal Cladding – Uninsulated Concrete Slab Intersection with Insulated Curb

Balcony Stepdown Detail

ID	Component	Thickness Inches (mm)	Conductivity Btu·in / ft ² ·hr·°F (W/m K)	Nominal Resistance hr·ft ² ·°F/Btu (m²K/W)	Density Ib/ft ³ (kg/m³)	Specific Heat Btu/lb·°F (J/kg K)
1	Interior Film (right side) ¹	-	-	R-0.6 (0.11 RSI) to R-0.9 (0.16 RSI)	-	-
2	Gypsum Board	1/2" (13)	1.1 (0.16)	R-0.5 (0.08 RSI)	50 (800)	0.26 (1090)
3	3 5/8" x 1 5/8" Steel Studs with Top and Bottom Tracks	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)
4	Fiberglass Batt Insulation	3 5/8" (92)	0.29 (0.044)	R-12.0 (2.11 RSI)	0.9 (14)	0.17 (710)
5	Exterior Sheathing	1/2" (13)	1.1 (0.16)	R-0.5 (0.09 RSI)	50 (800)	0.26 (1090)
6	Horizontal Z-Girt with 1 1/2" Flange	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)
7	Exterior Insulation	3" (76)	-	R-15 (2.64 RSI)	1.8 (28)	0.29 (1220)
8	Panel Clip	14 Gauge	430 (62)	-	489 (7830)	0.12 (500)
9	Metal Cladding with	n 1/2" vented airs	pace incorporated	into exterior heat transfer c	oefficient	
10	Concrete Slab	8" (204)	12.5 (1.8)	-	140 (2250)	0.20 (850)
11	Curb Insulation	-	-	R-15 (2.64 RSI)	1.8 (28)	0.29 (1220)
12	Exterior Film (left side) ¹	-	-	R-0.2 (0.03 RSI) to R-0.7 (0.12 RSI)	-	-

Detail A07-SA Exterior and Interior Insulated 3 5/8" x 1 5/8" Steel Stud (16" o.c.) Wall Assembly with Horizontal Z-girts (24" o.c.) Supporting Metal Cladding – Isokorb CM20 Thermally Broken Slab Projection with Uninsulated Curb

Thermally Broken Slab Detail (Isokorb CM20)

ID	Component	Thickness Inches (mm)	Conductivity Btu·in / ft ² ·hr·°F (W/m K)	Nominal Resistance hr⋅ft².∘F/Btu (m²K/W)	Density Ib/ft ³ (kg/m ³)	Specific Heat Btu/lb·°F (J/kg K)
1	Interior Films (right side) ¹	-	-	R-0.6 (0.11 RSI) to R-0.9 (0.16 RSI)	-	-
2	Gypsum Board	1/2" (13)	1.1 (0.16)	R-0.5 (0.08 RSI)	50 (800)	0.26 (1090)
3	3 5/8" x 1 5/8" Steel Studs with Top and Bottom Tracks	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)
4	Fibreglass Batt Insulation	3 5/8" (92)	0.29 (0.044)	R-12.0 (2.11 RSI)	0.9 (14)	0.17 (710)
5	Exterior Sheathing	1/2" (13)	1.1 (0.16)	R-0.5 (0.09 RSI)	50 (800)	0.26 (1090)
6	Horizontal Z-girts w/ 1 1/2" Flange	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)
7	Exterior Insulation	3" (76)	-	R-15 (2.64 RSI)	1.8 (28)	0.29 (1220)
8	Metal Cladding with	1 ¹ / ₂ " vented airs	pace incorporated	into exterior heat transfer c	oefficient	
9	Concrete Slab	8" (203)	12 (1.8)	-	140 (2250)	0.20 (850)
10	Stainless Steel Rebar	-	118 (17)	-	500 (8000)	0.12 (500)
44	HDPE Plastic Sleeve	-	1.7 (0.25)	-	59 (950)	0.48 (2000)
11	UHPC Concrete Mix	-	5.5 (0.80)	-	140 (2250)	0.20 (850)
12	Polystyrene Hard Foam Insulation	3 1/8" (80)	0.2 (0.031)	R-14.7 (2.58 RSI)	66 (1060)	0.35 (1500)
13	Cement Board	1/2" (13)	1.7 (0.25)	-	72 (1150)	0.20 (850)
14	Exterior Film (left side) ¹	-	-	R-0.2 (0.03 RSI) to R-0.7 (0.12 RSI)	-	-

Detail A08-SA

Exterior and Interior Insulated 3 5/8" x 1 5/8" Steel Stud (16" o.c.) Wall Assembly with Horizontal Z-girts (24" o.c.) Supporting Metal Cladding – Isokorb CM20 Thermally Broken Slab Projection with Insulated Curb

Thermally Broken Slab Detail (Isokorb CM20)

ID	Component	Thickness Inches (mm)	Conductivity Btu·in / ft ² ·hr·°F (W/m K)	Nominal Resistance hr⋅ft².ºF/Btu (m²K/W)	Density Ib/ft³ (kg/m³)	Specific Heat Btu/lb·⁰F (J/kg K)
1	Interior Films (right side) ¹	-	-	R-0.6 (0.11 RSI) to R-0.9 (0.16 RSI)	-	-
2	Gypsum Board	1/2" (13)	1.1 (0.16)	R-0.5 (0.08 RSI)	50 (800)	0.26 (1090)
3	3 5/8" x 1 5/8" Steel Studs with Top and Bottom Tracks	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)
4	Fibreglass Batt Insulation	3 5/8" (92)	0.29 (0.044)	R-12.0 (2.11 RSI)	0.9 (14)	0.17 (710)
5	Exterior Sheathing	1/2" (13)	1.1 (0.16)	R-0.5 (0.09 RSI)	50 (800)	0.26 (1090)
6	Horizontal Z-girts w/ 1 1/2" Flange	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)
7	Exterior Insulation	3" (76)	-	R-15 (2.64 RSI)	1.8 (28)	0.29 (1220)
8	Metal Cladding with	1/2" vented airs	bace incorporated	into exterior heat transfer c	oefficient	
9	Concrete Slab	8" (203)	12 (1.8)	-	140 (2250)	0.20 (850)
10	Stainless Steel Rebar	-	118 (17)	-	500 (8000)	0.12 (500)
11	HDPE Plastic Sleeve	-	1.7 (0.25)	-	59 (950)	0.48 (2000)
11	UHPC Concrete Mix	-	5.5 (0.80)	-	140 (2250)	0.20 (850)
12	Polystyrene Hard Foam Insulation	3 1/8" (80)	0.217 (0.031)	R-14.7 (2.58 RSI)	66 (1060)	0.35 (1500)
13	Cement Board	1/2" (13)	1.7 (0.25)	-	72 (1150)	0.20 (850)
14	Curb Insulation	3" (76)	-	R-15 (2.64 RSI)	1.8 (28)	0.29 (1220)
15	Exterior Film (left side) ¹	-	-	R-0.2 (0.03 RSI) to R-0.7 (0.12 RSI)	-	-

Detail B01-CC Exterior and Interior Insulated 3 5/8" x 1 5/8" Steel Stud (16" o.c.) Wall Assembly with Intermittent Vertical Z Girts (16" o.c.) Supporting Metal Cladding –Concrete Roof Deck at Continuous Concrete Parapet

Continuous Concrete Parapet Detail

ID	Component	Thickness Inches (mm)	Conductivity Btu·in / ft ² ·hr·°F (W/m K)	Nominal Resistance hr·ft ^{2.} °F/Btu (m²K/W)	Density Ib/ft ³ (kg/m ³)	Specific Heat Btu/Ib·°F (J/kg K)
1	Interior Film (right side) ¹	-	-	R-0.6 (0.11 RSI) to R-0.7 (0.12 RSI)	-	-
2	Gypsum Board	1/2" (13)	1.1 (0.16)	R-0.5 (0.08 RSI)	50 (800)	0.26 (1090)
3	3 5/8" x 1 5/8" Steel Studs with Top Tracks	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)
4	Fiberglass Batt Insulation	3 5/8" (92)	0.29 (0.044)	R-12.0 (2.11 RSI)	0.9 (14)	0.17 (710)
5	Exterior Sheathing	1/2'" (13)	1.1 (0.16)	R-0.5 (0.09 RSI)	50 (800)	0.26 (1090)
6	Exterior Insulation	3" (76)	-	R-15 (2.64 RSI)	1.8 (28)	0.29 (1220)
7	Intermittent Vertical Z-Girts with 1 1/2" Flange	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)
8	Metal Cladding with	n ½" vented airs	bace incorporated	into exterior heat transfer c	oefficient	
9	Concrete Slab and Parapet	8" (203)	12.5 (1.8)	-	140 (2250)	0.20 (850)
10	Wood Blocking	5/8" (16)	0.69 (0.10)	R-1.0 (0.18 RSI)	31 (500)	0.45 (1880)
11	Steel Cap Flashing	18 Gauge	347 (50)	-	489 (7830)	0.12 (500)
12	Rigid Roof Insulation	4 (102)	0.20 (0.029)	R-20 (3.50 RSI)	1.8 (28)	0.29 (1220)
13	Flashing & roof f	finish material ar	e incorporated into	o exterior heat transfer coef	ficient	
14	Exterior Film (left side) ¹	-	-	R-0.2 (0.03 RSI) to R-0.7 (0.12 RSI)	-	-

Detail B02-SA Exterior and Interior Insulated 3 5/8" x 1 5/8" Steel Stud (16" o.c.) Wall Assembly with Intermittent Vertical Z Girts (16" o.c.) Supporting Metal Cladding –Concrete Roof Deck at Isokorb AXT1 Thermally Broken Concrete Parapet

Thermally Broken Parapet Detail (Isokorb AXT1)

ID	Component	Thickness Inches (mm)	Conductivity Btu·in / ft ² ·hr·°F (W/m K)	Nominal Resistance hr·ft ^{2.} °F/Btu (m²K/W)	Density Ib/ft ³ (kg/m ³)	Specific Heat Btu/Ib·°F (J/kg K)
1	Interior Film (right side) ¹	-	-	R-0.6 (0.11 RSI) to R-0.7 (0.12 RSI)	-	_
2	Gypsum Board	1/2" (13)	1.1 (0.16)	R-0.5 (0.08 RSI)	50 (800)	0.26 (1090)
3	3 5/8" x 1 5/8" Steel Studs with Top Tracks	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)
4	Fiberglass Batt Insulation	3 5/8" (92)	0.29 (0.044)	R-12.0 (2.11 RSI)	0.9 (14)	0.17 (710)
5	Exterior Sheathing	1/2'" (13)	1.1 (0.16)	R-0.5 (0.09 RSI)	50 (800)	0.26 (1090)
6	Exterior Insulation	3" (76)	-	R-15 (2.64 RSI)	1.8 (28)	0.29 (1220)
7	Intermittent Vertical Z-Girts with 1 1/2" Flange	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)
8	Metal Cladding with	n ½" vented airs	pace incorporated	into exterior heat transfer c	oefficient	
9	Concrete Slab and Parapet	8" (203)	12.5 (1.8)	-	140 (2250)	0.20 (850)
10	Stainless Steel Rebar	-	118 (17)	-	500 (8000)	0.12 (500)
11	Polystyrene Hard Foam Insulation	4 3/4" (120)	0.217 (0.031)	R-22.0 (3.87 RSI)	66 (1060)	0.35 (1500)
12	Wood Blocking	5/8" (16)	0.69 (0.10)	R-1.0 (0.18 RSI)	31 (500)	0.45 (1880)
13	Steel Cap Flashing	18 Gauge	347 (50)	-	489 (7830)	0.12 (500)
14	Rigid Roof Insulation	4 (102)	0.20 (0.029)	R-20 (3.50 RSI)	1.8 (28)	0.29 (1220)
15	Flashing & roof t	finish material ar	re incorporated inte	o exterior heat transfer coef	fficient	
16	Exterior Film (left side) ¹	-	-	R-0.2 (0.03 RSI) to R-0.7 (0.12 RSI)	-	-

Detail C01-CC

Exterior and Interior Insulated 3 5/8" x 1 5/8" Steel Stud (16" o.c.) Wall Assembly with Horizontal Z-girts (24" o.c.) Supporting Metal Cladding – Structural Steel Floor Intersection with Uninterrupted Beam

ID	Component	Thickness Inches (mm)	Conductivity Btu·in / ft ² ·hr·°F (W/m K)	Nominal Resistance hr·ft ^{2.} °F/Btu (m²K/W)	Density Ib/ft ³ (kg/m ³)	Specific Heat Btu/lb·°F (J/kg K)
1	Interior Film (right side) ¹	-	-	R-0.6 (0.11 RSI) to R-0.9 (0.16 RSI)	-	-
2	Gypsum Board	1/2" (13)	1.1 (0.16)	R-0.5 (0.08 RSI)	50 (800)	0.26 (1090)
3	3 5/8" x 1 5/8" Steel Studs with Top and Bottom Tracks	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)
4	Fibreglass Batt Insulation	3 5/8" (92)	0.29 (0.044)	R-12.0 (2.11 RSI)	0.9 (14)	0.17 (710)
5	Exterior Sheathing	1/2" (13)	1.1 (0.16)	R-0.5 (0.09 RSI)	50 (800)	0.26 (1090)
6	Horizontal Z-girts with 1 1/2" Flange	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)
7	Exterior Insulation	3" (76)	-	R-15 (2.64 RSI)	1.8 (28)	0.29 (1220)
8	Metal Cladding with	1/2" vented airs	bace incorporated	into exterior heat transfer c	oefficient	
9	Steel Through Beam W14x26 (W360x39)	-	347 (50)	-	489 (7830)	0.12 (500)
10	Steel Deck	1/16" (1.6)	347 (50)	-	489 (7830)	0.12 (500)
11	Concrete Topping	6" (152)	6.3 (0.9)	-	120 (1920)	0.20 (850)
12	Exterior Film (left side) ¹	-	-	R-0.7 (0.12 RSI)	-	-

Detail C02-TI

Exterior and Interior Insulated 3 5/8" x 1 5/8" Steel Stud (16" o.c.) Wall Assembly with Horizontal Z-girts (24" o.c.) Supporting Metal Cladding – Structural Steel Floor Intersection with Isolator Pad

ID	Component	Thickness Inches (mm)	Conductivity Btu·in / ft ² ·hr·°F (W/m K)	Nominal Resistance hr·ft ² ·ºF/Btu (m²K/W)	Density Ib/ft ³ (kg/m ³)	Specific Heat Btu/lb·⁰F (J/kg K)
1	Interior Film (right side) ¹	-	-	R-0.6 (0.11 RSI) to R-0.9 (0.16 RSI)	-	-
2	Gypsum Board	1/2" (13)	1.1 (0.16)	R-0.5 (0.08 RSI)	50 (800)	0.26 (1090)
3	3 5/8" x 1 5/8" Steel Studs with Top and Bottom Tracks	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)
4	Fibreglass Batt Insulation	3 5/8" (92)	0.29 (0.044)	R-12.0 (2.11 RSI)	0.9 (14)	0.17 (710)
5	Exterior Sheathing	1/2" (13)	1.1 (0.16)	R-0.5 (0.09 RSI)	50 (800)	0.26 (1090)
6	Horizontal Z-girts with 1 1/2" Flange	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)
7	Exterior Insulation	3" (76)	-	R-15 (2.64 RSI)	1.8 (28)	0.29 (1220)
8	Metal Cladding with	1 ¹ / ₂ " vented airs	bace incorporated	into exterior heat transfer c	oefficient	
9	Steel Beam W14x26 (W360x39)	-	347 (50)	-	489 (7830)	0.12 (500)
10	Steel Bearing Plates	1 3/16" (30)	347 (50)	-	489 (7830)	0.12 (500)
11	Steel Deck	1/16" (1.6)	347 (50)	-	489 (7830)	0.12 (500)
12	Concrete Topping	6" (152)	6.3 (0.9)	-	120 (1920)	0.20 (850)
13	Steel or Stainless Steel Bolts	-	347 (50) to 118 (17)	-	500 (8000)	0.12 (500)
14	Polymer Thermal Isolator Pad	3/16"(5) to 1" (25)	1.7 (0.25)	R0.1 (0.02 RSI) to R-0.6 (0.10 RSI)	137 (2200)	0.31 (1300)
15	Exterior Film (left side) ¹	-	-	R-0.7 (0.12 RSI)	-	-

Detail C03-SA

Exterior and Interior Insulated 3 5/8" x 1 5/8" Steel Stud (16" o.c.) Wall Assembly with Horizontal Z-girts (24" o.c.) Supporting Metal Cladding – Structural Steel Floor Intersection with Isokorb S22 Thermally Broken Beam

Component	Thickness Inches (mm)	Conductivity Btu·in / ft ² ·hr·°F (W/m K)	Nominal Resistance hr·ft ² ·°F/Btu (m²K/W)	Density Ib/ft ³ (kg/m ³)	Specific Heat Btu/lb·°F (J/kg K)
Interior Film (right side) ¹	-	-	R-0.6 (0.11 RSI) to R-0.9 (0.16 RSI)	-	-
Gypsum Board	1/2" (13)	1.1 (0.16)	R-0.5 (0.08 RSI)	50 (800)	0.26 (1090)
3 5/8" x 1 5/8" Steel Studs with Top and Bottom Tracks	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)
Fibreglass Batt Insulation	3 5/8" (92)	0.29 (0.044)	R-12.0 (2.11 RSI)	0.9 (14)	0.17 (710)
Exterior Sheathing	1/2" (13)	1.1 (0.16)	R-0.5 (0.09 RSI)	50 (800)	0.26 (1090)
Horizontal Z-girts with 1 1/2" Flange	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)
Exterior Insulation	3" (76)	-	R-15 (2.64 RSI)	1.8 (28)	0.29 (1220)
Metal Cladding with	1 ¹ / ₂ " vented airs	pace incorporated	into exterior heat transfer c	oefficient	
Steel Beam W14x26 (W360x39)	-	347 (50)	-	489 (7830)	0.12 (500)
Steel Bearing Plates	1 3/16" (30)	347 (50)	-	489 (7830)	0.12 (500)
Steel Deck	1/16" (1.6)	347 (50)	-	489 (7830)	0.12 (500)
Concrete Topping	6" (152)	6.3 (0.9)	-	120 (1920)	0.20 (850)
	Isokorb	S22 Thermal Bre	ak		
Stainless Steel Bolts, Plates and HSS	-	118 (17)	-	500 (8000)	0.12 (500)
Polystyrene Hard Foam Insulation	3 1/8" (80)	0.217 (0.031)	R-14.5 (2.6 RSI)	66 (1060)	0.35 (1500)
Exterior Film (left side) ¹	-	-	R-0.7 (0.12 RSI)	-	-
	Component Interior Film (right side) ¹ Gypsum Board 3 5/8" x 1 5/8" Steel Studs with Top and Bottom Tracks Fibreglass Batt Insulation Exterior Sheathing Horizontal Z-girts with 1 ½" Flange Exterior Insulation Metal Cladding with Steel Beam W14x26 (W360x39) Steel Bearing Plates Steel Deck Concrete Topping Stainless Steel Bolts, Plates and HSS Polystyrene Hard Foam Insulation Exterior Film (left side) ¹	ComponentThickness Inches (mm)Interior Film (right side)1-Gypsum Board1/2" (13)3 5/8" x 1 5/8" Steel Studs with Top and Bottom Tracks18 GaugeFibreglass Batt Insulation3 5/8" (92)Exterior Sheathing1/2" (13)Horizontal Z-girts with 1 ½" Flange18 GaugeExterior Insulation3" (76)Metal Cladding with ½" vented airsSteel Beam W14x26 (W360x39)-Steel Bearing Plates1 3/16" (30)Steel Deck1/16" (1.6)Concrete Topping6" (152)Stainless Steel Bolts, Plates and HSS-Polystyrene Hard Foam Insulation3 1/8" (80)Exterior Film (left side)1-	ComponentThickness Inches (mm)Conductivity Btu-in / ft²-hr-°F (W/m K)Interior Film (right side)1Gypsum Board1/2" (13)1.1 (0.16)3 5/8" x 1 5/8" Steel Studs with Top and Bottom Tracks18 Gauge430 (62)Fibreglass Batt Insulation3 5/8" (92)0.29 (0.044)Exterior Sheathing1/2" (13)1.1 (0.16)Horizontal Z-girts with 1 ½" Flange18 Gauge430 (62)Exterior Insulation3" (76)-Metal Cladding wit-2" vented airs-ze incorporatedSteel Beam W14x26 (W360x39)-347 (50)Steel Bearing Plates1 3/16" (30)347 (50)Steel Deck1/16" (1.6)347 (50)Concrete Topping6" (152)6.3 (0.9)Stainless Steel Bolts, Plates and HSS-118 (17)Polystyrene Hard Foam Insulation3 1/8" (80)0.217 (0.031)Exterior Film (left side)1	Component Thickness Inches (mm) Conductivity Btu-in / ft ² -hr-9F (W/MK) Nominal Resistance hr-ft ² -9F/Btu (m ² K/W) Interior Film (right side) ¹ - - R-0.6 (0.11 RSI) to R-0.9 (0.16 RSI) Gypsum Board 1/2" (13) 1.1 (0.16) R-0.6 (0.11 RSI) to R-0.9 (0.16 RSI) 3 5/8" x 1 5/8" Steel Studs with Top and Bottom Tracks 18 Gauge 430 (62) - Fibreglass Batt Insulation 3 5/8" (92) 0.29 (0.044) R-12.0 (2.11 RSI) to R-0.5 (0.09 RSI) Exterior Sheathing 11/2" (13) 1.1 (0.16) R-0.5 (0.09 RSI) Horizontal Z-girts with 1½" Flange 18 Gauge 430 (62) - Exterior Insulation 3" (76) - R-15 (2.64 RSI) Getel Beam W14x26 (W360x39) 3" (76) - R-15 (2.64 RSI) Steel Bearing Plates 1 3/16" (30) 347 (50) - Steel Deck 1 1/16" (1.6) 347 (50) - Concret Topping 6" (152) 6.3 (0.9) - Steel Deck 1/16" (1.6) 347 (50) - Grocret Topping 6" (152) 6.3 (0.9) -	ComponentConductivity Btuin / tt ² ·hr-°F (W/M K)Nominal Resistance hr.ft ² ·P/Btu (m ² K/W)Density lb/ft³ (kg/m³)Interior Film (right side)1<

Detail D01-CC

Exterior Insulated 3 5/8" x 1 5/8" Steel Stud (16" o.c.) Wall Assembly with Intermittent Vertical Z-girts (16" o.c.) Supporting Metal Cladding – Concrete Floor to Steel Beam Connection

ID	Component	Thickness Inches (mm)	Conductivity Btu·in / ft ² ·hr·°F (W/m K)	Nominal Resistance hr·ft ² ·°F/Btu (m²K/W)	Density Ib/ft³ (kg/m³)	Specific Heat Btu/lb·°F (J/kg K)
1	Interior Film (right side) ¹	-	-	R-0.6 (0.11 RSI) to R-0.9 (0.16 RSI)	-	-
2	Gypsum Board	1/2" (13)	1.1 (0.16)	R-0.5 (0.08 RSI)	50 (800)	0.26 (1090)
3	3 5/8" x 1 5/8" Steel Studs with Top and Bottom Tracks	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)
4	Air Cavity	3 5/8" (92)	-	R-0.9 (0.16 RSI)	0.075 (1.2)	0.24 (1000)
5	Exterior Sheathing	1/2" (13)	1.1 (0.16)	R-0.5 (0.09 RSI)	50 (800)	0.26 (1090)
6	Intermittent Vertical Z-Girts with 1 1/2" Flange	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)
7	Exterior Insulation	3" (76)	-	R-15 (2.64 RSI)	1.8 (28)	0.29 (1220)
8	Metal Cladding with	n 1⁄2" vented airs	pace incorporated	into exterior heat transfer c	oefficient	
9	Concrete Slab	8 5/8" (220)	12.5 (1.8)	-	140 (2250)	0.20 (850)
10	Steel Beam W8x18 (W200x27)	-	347 (50)	-	489 (7830)	0.12 (500)
11	Steel Bearing Plates	3/4" (20)	347 (50)	-	489 (7830)	0.12 (500)
12	Steel Bolts and Rebar	-	347 (50)	-	489 (7830)	0.12 (500)
13	Stainless Steel Anchors	-	118 (17)	-	500 (8000)	0.12 (500)
14	Exterior Film (left side) ¹	_	-	R-0.2 (0.03 RSI) to R-0.7 (0.12 RSI)	_	-

Detail D02-TI

Exterior Insulated 3 5/8" x 1 5/8" Steel Stud (16" o.c.) Wall Assembly with Intermittent Vertical Z-girts (16" o.c.) Supporting Metal Cladding – Concrete Floor to Steel Beam with a Thermal Isolator Pad Connection

ID	Component	Thickness Inches (mm)	Conductivity Btu·in / ft ² ·hr·°F (W/m K)	Nominal Resistance hr⋅ft²₊ºF/Btu (m²K/W)	Density Ib/ft³ (kg/m³)	Specific Heat Btu/lb·°F (J/kg K)
1	Interior Film (right side) ¹	-	-	R-0.6 (0.11 RSI) to R-0.9 (0.16 RSI)	-	-
2	Gypsum Board	1/2" (13)	1.1 (0.16)	R-0.5 (0.08 RSI)	50 (800)	0.26 (1090)
3	3 5/8" x 1 5/8" Steel Studs with Top and Bottom Tracks	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)
4	Air Cavity	3 5/8" (92)	-	R-0.9 (0.16 RSI)	0.075 (1.2)	0.24 (1000)
5	Exterior Sheathing	1/2" (13)	1.1 (0.16)	R-0.5 (0.09 RSI)	50 (800)	0.26 (1090)
6	Intermittent Vertical Z-Girts with 1 1/2" Flange	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)
7	Exterior Insulation	3" (76)	-	R-15 (2.64 RSI)	1.8 (28)	0.29 (1220)
8	Metal Cladding with	1 ¹ / ₂ " vented airs	pace incorporated	into exterior heat transfer c	oefficient	
9	Concrete Slab	8 5/8" (220)	12.5 (1.8)	-	140 (2250)	0.20 (850)
10	Steel Beam W8x18 (W200x27)	-	347 (50)	-	489 (7830)	0.12 (500)
11	Steel Bearing Plates	3/4" (20)	347 (50)	-	489 (7830)	0.12 (500)
12	Steel Bolts and Rebar	-	347 (50)	-	489 (7830)	0.12 (500)
13	Stainless Steel Anchors	-	118 (17)	-	500 (8000)	0.12 (500)
14	Polymer Thermal Isolator Pad	3/8" (10)	1.7 (0.25)	R-0.23 (0.04 RSI)	137 (2200)	0.31 (1300)
15	Exterior Film (left side) ¹	-	-	R-0.2 (0.03 RSI) to R-0.7 (0.12 RSI)	-	-

Detail D03-SA Exterior Insulated 3 5/8" x 1 5/8" Steel Stud (16" o.c.) Wall Assembly with Intermittent Vertical Z-girts (16" o.c.) Supporting Metal Cladding – Concrete Floor to Steel Beam with Isokorb Ks14 Connection

ID	Component	Thickness Inches (mm)	Conductivity Btu·in / ft ² ·hr·°F (W/m K)	Nominal Resistance hr·ft ² ·°F/Btu (m²K/W)	Density Ib/ft ³ (kg/m ³)	Specific Heat Btu/lb·°F (J/kg K)
1	Interior Film (right side) ¹	-	-	R-0.6 (0.11 RSI) to R-0.9 (0.16 RSI)	-	-
2	Gypsum Board	1/2" (13)	1.1 (0.16)	R-0.5 (0.08 RSI)	50 (800)	0.26 (1090)
3	3 5/8" x 1 5/8" Steel Studs with Top and Bottom Tracks	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)
4	Air Cavity	3 5/8" (92)	-	R-0.9 (0.16 RSI)	0.075 (1.2)	0.24 (1000)
5	Exterior Sheathing	1/2" (13)	1.1 (0.16)	R-0.5 (0.09 RSI)	50 (800)	0.26 (1090)
6	Intermittent Vertical Z-Girts with 1 1/2" Flange	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)
7	Exterior Insulation	3" (76)	-	R-15 (2.64 RSI)	1.8 (28)	0.29 (1220)
8	Metal Cladding with	1 ¹ / ₂ " vented airs	pace incorporated	into exterior heat transfer c	oefficient	
9	Concrete Slab	8 5/8" (220)	12.5 (1.8)	-	140 (2250)	0.20 (850)
10	Steel Beam W8x18 (W200x27)	-	347 (50)	-	489 (7830)	0.12 (500)
11	Steel Bearing Plate with Butt Stop	3/4" (20)	347 (50)	-	489 (7830)	0.12 (500)
		Isokorb	KS14 Thermal Bre	eak		
12	Stainless Steel Reinforcement	-	118 (17)	-	500 (8000)	0.12 (500)
13	Polystyrene Hard Foam Insulation	3 1/8" (80)	0.217 (0.031)	R-14.5 (2.6 RSI)	66 (1060)	0.35 (1500)
14	Exterior Film (left side) ¹	-	-	R-0.2 (0.03 RSI) to R-0.7 (0.12 RSI)	-	-

Interior Insulated Concrete Mass Wall with 1 5/8" Steel Studs (16" o.c.) Supporting Interior Finish – Continuous Concrete Floor Slab Detail E01-CC Intersection 2 3 4 5 7

1220 [4"]

6

*81312'8"1+

Continuous Concrete Slab Detail

ID	Component	Thickness Inches (mm)	Conductivity Btu·in / ft ² ·hr·°F (W/m K)	Nominal Resistance hr·ft ² ·ºF/Btu (m²K/W)	Density Ib/ft ³ (kg/m ³)	Specific Heat Btu/lb·°F (J/kg K)
1	Interior Film (right side) ¹	-	-	R-0.6 (0.11 RSI) to R-0.9 (0.16 RSI)	-	-
2	Gypsum Board	1/2" (13)	1.1 (0.16)	R-0.5 (0.08 RSI)	50 (800)	0.26 (1090)
3	1 5/8" x 1 5/8" Steel Studs with Top and Bottom Tracks	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)
4	Air in Stud Cavity	1 5/8" (41)	-	R-0.9 (0.16 RSI)	0.075 (1.2)	0.24 (1000)
5	Continuous Insulation	2 1/2" (64)	-	R-10.0 (1.76 RSI)	1.8 (28)	0.29 (1220)
6	Concrete Wall	8" (203)	12.5 (1.8)	R-0.64 (0.11 RSI)	140 (2250)	0.20 (850)
7	Concrete Slab	8" (203)	12.5 (1.8)	-	140 (2250)	0.20 (850)
8	Exterior Film (left side) ¹	-	-	R-0.2 (0.03 RSI)	-	-

Detail E02-SA

Interior Insulated Concrete Mass Wall with 1 5/8" Steel Studs (16" o.c.) Supporting Interior Finish – Isokorb Rutherma DF Thermally Broken Concrete Floor Slab Intersection

Thermally Broken Slab Detail (Rutherma DF)

ID	Component	Thickness Inches (mm)	Conductivity Btu·in / ft ² ·hr·°F (W/m K)	Nominal Resistance hr·ft².ºF/Btu (m²K/W)	Density Ib/ft³ (kg/m³)	Specific Heat Btu/lb·⁰F (J/kg K)
1	Interior Film (right side) ¹	-	-	R-0.6 (0.11 RSI) to R-0.9 (0.16 RSI)	-	-
2	Gypsum Board	1/2" (13)	1.1 (0.16)	R-0.5 (0.08 RSI)	50 (800)	0.26 (1090)
3	1 5/8" x 1 5/8" Steel Studs with Top and Bottom Tracks	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)
4	Air in Stud Cavity	1 5/8" (41)	-	R-0.9 (0.16 RSI)	0.075 (1.2)	0.24 (1000)
5	Continuous Insulation	2 1/2" (64)	-	R-10.0 (1.76 RSI)	1.8 (28)	0.29 (1220)
6	Concrete Wall	8" (203)	12.5 (1.8)	R-0.64 (0.11 RSI)	140 (2250)	0.20 (850)
7	Concrete Slab	8" (203)	12.5 (1.8)	-	140 (2250)	0.20 (850)
8	Stainless Steel Reinforcement	-	118 (17)	-	500 (8000)	0.12 (500)
9	Polystyrene Hard Foam Insulation	2 3/8" (60)	0.217 (0.031)	R-10.9 (1.93 RSI)	66 (1060)	0.35 (1500)
10	Cement Board	1/2" (13)	1.7 (0.25)	-	72 (1150)	0.20 (850)
11	Exterior Film (left side) ¹	-	-	R-0.2 (0.03 RSI)	-	-

APPENDIX B: Thermal Results Data Sheets

General Modeling Approach

For this report, a steady-state conduction model was used. Air cavities were assumed to have an effective thermal conductivity which includes the effects of cavity convection. Interior/exterior air films were taken from Table 1, p. 26.1 of 2009 ASHRAE Handbook – Fundaments depending on surface orientation. From the calibration in 1365-RP, contact resistances between materials were modeled. The temperature difference between interior and exterior was modeled as a dimensionless temperature index between 0. These values, along with other modeling parameters, are given in ASHRAE 1365-RP, Chapter 5.

Thermal Transmittance

The methodology presented in ASHRAE 1365-RP separates the thermal performance of assemblies and details in order to simplify heat loss calculations. For the assemblies, a characteristic area is modeled and the heat flow through that area is found. To find the effects of thermal bridges in details (such as slab edges), the assembly is modeled with and without the detail. The difference in heat loss between the two models is then prescribed to that detail. This allows the thermal transmittances to be divided into three categories: clear field, linear and point transmittances.

The clear field transmittance is the heat flow from the wall or roof assembly, including uniformly distributed thermal bridges that are not practical to account for on an individual basis, such as structural framing, brick ties and cladding supports. This is treated the same as in standard practice, defined as a U-value, Uo (heat flow per area). For a specific area of opaque wall, this can be converted into an overall heat flow per temperature difference, Qo.

The linear transmittance is the additional heat flow caused by details that can be defined by a characteristic length, L. This includes slab edges, corners, parapets, and transitions between assemblies. The linear transmittance is a heat flow per length, and is represented by psi (Ψ).

The point transmittance is the heat flow caused by thermal bridges that occur only at single, infrequent locations. This includes building components such as pipe penetrations and intersections between linear details. The point transmittance is a single additive amount of heat, represented by chi (χ).

With these thermal quantities the overall heat flow can be found simple by adding all the components together, as given in equation 1.

$$Q = \Sigma Q_{thermalbridge} + Q_o = \Sigma (\Psi \cdot L) + \Sigma (\chi) + Q_o$$
FQ 1

Equation 1 gives the overall heat flow for a given building size. For energy modeling, or comparisons to standards and codes, often it is more useful to present equation 1 as a heat flow per area. Knowing that the opaque wall area is A_{total} , and U=Q/At_{otal}, equation 2 can be derived.

$$U = \frac{\Sigma \left(\Psi \cdot L\right) + \Sigma \left(\chi\right)}{A_{Total}} + U_o$$
 EQ 2

Since the linear and point transmittances are simply added amounts of heat flow, they can be individually included or excluded depending on design requirements.

Temperature Index

For condensation concerns, the thermal model can also provide surface temperatures of assembly components to help locate potential areas of risk. In order to be applicable for any climate (varying indoor and outdoor temperatures), the temperatures can been non-dimensionalized into a temperature index, T_i, as shown below in Equation 3.

$$T_{i} = \frac{T_{surface} - T_{outside}}{T_{inside} - T_{outside}}$$

EQ 3

The index is the ratio of the surface temperature relative to the interior and exterior temperatures. The temperature index has a value between 0 and 1, where 0 is the exterior temperature and 1 is the interior temperature. If T_i is known, Equation 3 can be rearranged for $T_{surface}$. These temperatures are given at steady state conductive heat flow with constant heat transfer coefficients. These are meant to give guidance in terms of potential areas of concern from condensation. Limitations of these values are discussed in ASHRAE 1365-RP.

Detail A01-CC

Exterior Insulated 3 5/8" x 1 5/8" Steel Stud (16" o.c.) Wall Assembly with Horizontal Z-girts (24" o.c.) Supporting Metal Cladding – Uninsulated Concrete Slab Intersection with Uninsulated Curb

Thermal Performance Indicators

Assembly 1D (Nominal) R-Value	R _{1D}	R-3.2 (0.56 RSI) + exterior insulation
Transmittance / Resistance without Anomaly	U₀, R₀	"clear wall" U- and R- value, without slab
Transmittance / Resistance	U R	U- and R-values for overall assembly
Surface Temperature Index ¹		0 = exterior temperature 1 = interior temperature
Linear Transmittance	ψ	Incremental increase in transmittance per linear length of slab

¹Surface temperatures are a result of steady-state conductive heat flow with constant heat transfer coefficients. Limitations are identified in ASHRAE 1365-RP

Nominal (1D) vs. Assembly Performance Indicators

Exterior Insulation 1D R-Value (RSI)	R₁ _D ft²⋅hr.ºF / Btu (m² K / W)	R₀ ft²⋅hr.ºF / Btu (m² K / W)	U₀ Btu/ft² ⋅hr ⋅ºF (W/m² K)	R ft²⋅hr.ºF / Btu (m² K / W)	U Btu/ft² ⋅hr ⋅ºF (W/m² K)	Ψ Btu/ft hr ºF (W/m K)
R-15 (2.64)	R-18.2 (3.20)	R-11.3 (1.99)	0.088 (0.50)	R-6.8 (1.19)	0.148 (0.84)	0.584 (1.011)

T _{i1}	0.71	Min T on sheathing away from slab, between studs at girts
T _{i2}	0.86	Max T on sheathing away from slab, between girts at studs
T _{i3}	0.45	Min T on slab exposed to interior air, at sheathing between studs

Detail A02-CC

Exterior Insulated 3 5/8" x 1 5/8" Steel Stud (16" o.c.) Wall Assembly with Horizontal Z-girts (24" o.c.) Supporting Metal Cladding – Uninsulated Concrete Slab Intersection with Insulated Curb

Thermal Performance Indicators

Assembly 1D (Nominal) R-Value	R _{1D}	R-3.2 (0.56 RSI) + exterior insulation
Transmittance / Resistance without Anomaly	U₀, R₀	"clear wall" U- and R- value, without slab
Transmittance / Resistance	U R	U- and R-values for overall assembly
Surface Temperature Index ¹	Ti	0 = exterior temperature 1 = interior temperature
Linear Transmittance	ψ	Incremental increase in transmittance per linear length of slab

¹Surface temperatures are a result of steady-state conductive heat flow with constant heat transfer coefficients. Limitations are identified in ASHRAE 1365-RP.

Nominal (1D) vs. Assembly Performance Indicators

Exterior Insulation 1D R-Value (RSI)	R₁ _D ft²⋅hr.ºF / Btu (m² K / W)	R₀ ft²⋅hr.ºF / Btu (m² K / W)	U₀ Btu/ft² ⋅hr ⋅ºF (W/m² K)	R ft²⋅hr.ºF / Btu (m² K / W)	U Btu/ft² ⋅hr ⋅ºF (W/m² K)	Ψ Btu/ft hr ºF (W/m K)
R-15 (2.64)	R-18.2 (3.20)	R-11.3 (1.99)	0.088 (0.50)	R-7.3 (1.28)	0.138 (0.78)	0.485 (0.840)

T _{i1}	0.71	Min T on sheathing away from slab, between studs at girts
T _{i2}	0.86	Max T on sheathing away from slab, between girts at studs
T _{i3}	0.57	Min T on slab exposed to interior air, at sheathing between studs

Detail A03-SA

Exterior Insulated 3 5/8" x 1 5/8" Steel Stud (16" o.c.) Wall Assembly with Horizontal Z-girts (24" o.c.) Supporting Metal Cladding – Isokorb CM20 Thermally Broken Slab Projection with Uninsulated Curb

Thermal Performance Indicators

Assembly 1D (Nominal) R-Value	R _{1D}	R-3.2 (0.56 RSI) + exterior insulation
Transmittance / Resistance without Anomaly	U₀, R₀	"clear wall" U- and R- value, without slab
Transmittance / Resistance	U R	U- and R-values for overall assembly
Surface Temperature Index ¹	Ti	0 = exterior temperature 1 = interior temperature
Linear Transmittance	ψ	Incremental increase in transmittance per linear length of slab

¹Surface temperatures are a result of steady-state conductive heat flow with constant heat transfer coefficients. Limitations are identified in ASHRAE 1365-RP.

Nominal (1D) vs. Assembly Performance Indicators

Exterior Insulation 1D R-Value (RSI)	R₁ _D ft²⋅hr.ºF / Btu (m² K / W)	R₀ ft ² ·hr.ºF / Btu (m² K / W)	U₀ Btu/ft² ⋅hr ⋅ºF (W/m² K)	R ft²⋅hr.ºF / Btu (m² K / W)	U Btu/ft² ⋅hr ⋅ºF (W/m² K)	Ψ Btu/ft hr ⁰F (W/m K)
R-15 (2.64)	R-18.2 (3.20)	R-11.3 (1.99)	0.088 (0.50)	R-8.7 (1.53)	0.115 (0.65)	0.261 (0.452)

T _{i1}	0.71	Min T on sheathing away from slab, between studs at girts
T _{i2}	0.86	Max T on sheathing away from slab, between girts at studs
T _{i3}	0.60	Min T on slab exposed to interior air, at sheathing between studs

Detail A04-SA

Exterior Insulated 3 5/8" x 1 5/8" Steel Stud (16" o.c.) Wall Assembly with Horizontal Z-girts (24" o.c.) Supporting Metal Cladding – Isokorb CM20 Thermally Broken Slab Projection with Insulated Curb

Thermal Performance Indicators

Assembly 1D (Nominal) R-Value	R _{1D}	R-3.2 (0.56 RSI) + exterior insulation
Transmittance / Resistance without Anomaly	U₀, R₀	"clear wall" U- and R- value, without slab
Transmittance / Resistance	U R	U- and R-values for overall assembly
Surface Temperature Index ¹	Ti	0 = exterior temperature 1 = interior temperature
Linear Transmittance	ψ	Incremental increase in transmittance per linear length of slab

¹Surface temperatures are a result of steady-state conductive heat flow with constant heat transfer coefficients. Limitations are identified in ASHRAE 1365-RP.

Nominal (1D) vs. Assembly Performance Indicators

Exterior Insulation 1D R-Value (RSI)	R₁ _D ft²⋅hr.ºF / Btu (m² K / W)	R₀ ft ² ·hr.ºF / Btu (m² K / W)	U₀ Btu/ft² ⋅hr ⋅ºF (W/m² K)	R ft²⋅hr⋅ºF / Btu (m² K / W)	U Btu/ft² ⋅hr ⋅ºF (W/m² K)	Ψ Btu/ft hr ºF (W/m K)
R-15 (2.64)	R-18.2 (3.20)	R-11.3 (1.99)	0.088 (0.50)	R-10.0 (1.76)	0.100 (0.57)	0.117 (0.203)

T _{i1}	0.71	Min T on sheathing away from slab, between studs at girts
T _{i2}	0.86	Max T on sheathing away from slab, between girts at studs
T _{i3}	0.77	Min T on slab exposed to interior air, at sheathing between studs

Detail A05-CC

Exterior and Interior Insulated 3 5/8" x 1 5/8" Steel Stud (16" o.c.) Wall Assembly with Horizontal Z-girts (24" o.c.) Supporting Metal Cladding – Un-insulated concrete slab intersection

Assembly 1D (Nominal) R-Value	R _{1D}	R-14.3 (2.52 RSI) + exterior insulation
Transmittance / Resistance	U₀, R₀	"clear wall" U- and R- value, without slab
Transmittance / Resistance	U, R	U- and R-values for overall assembly
Surface Temperature Index ¹	Ti	0 = exterior temperature 1 = interior temperature
Linear Transmittance	ψ	Incremental increase in transmittance per linear length of slab

Thermal Performance Indicators

¹Surface temperatures are a result of steady-state conductive heat flow with constant heat transfer coefficients. Limitations are identified in ASHRAE 1365-RP.

View from Interior

View from Exterior

Nominal (1D) vs. Assembly Performance Indicators

Exterior Insulation 1D R-Value (RSI)	R₁D ft²⋅hr.ºF / Btu (m² K / W)	R₀ ft²·hr.ºF / Btu (m² K / W)	U₀ Btu/ft² ⋅hr ⋅ºF (W/m² K)	R ft²·hr.ºF / Btu (m² K / W)	U Btu/ft² ·hr ·ºF (W/m² K)	Ψ Btu/ft ·hr.⁰F (W/m K)
R-15 (2.64)	R-29.3 (5.16)	R-18.5 (3.25)	0.054 (0.31)	R-8.6 (1.51)	0.116 (0.66)	0.612 (1.059)

T _{i1}	0.35	Min T on sheathing away from slab, between studs at girts
T _{i2}	0.73	Max T on sheathing away from slab, between girts at studs
T _{i3}	0.64	Min T on slab exposed to interior air, at gypsum between studs

Detail A06-CC

Exterior and Interior Insulated 3 5/8" x 1 5/8" Steel Stud (16" o.c.) Wall Assembly with Horizontal Z-girts (24" o.c.) Supporting Metal Cladding – Uninsulated Concrete Slab Intersection with Insulated Curb

Assembly 1D (Nominal) R-Value	R _{1D}	R-14.3 (2.52 RSI) + exterior insulation
Transmittance / Resistance without Anomaly	U₀, R₀	"clear wall" U- and R- value, without slab
Transmittance / Resistance	U R	U- and R-values for overall assembly
Surface Temperature Index ¹	Ti	0 = exterior temperature 1 = interior temperature
Linear Transmittance	ψ	Incremental increase in transmittance per linear length of slab

¹Surface temperatures are a result of steady-state conductive heat flow with constant heat transfer coefficients. Limitations are identified in ASHRAE 1365-RP.

Nominal (1D) vs. Assembly Performance Indicators

Exterior Insulation 1D R-Value (RSI)	R₁ _D ft²⋅hr.ºF / Btu (m² K / W)	R₀ ft²·hr.ºF / Btu (m² K / W)	U₀ Btu/ft² ⋅hr ⋅ºF (W/m² K)	R ft²⋅hr⋅ºF / Btu (m² K / W)	U Btu/ft² ⋅hr ⋅ºF (W/m² K)	Ψ Btu/ft hr ⁰F (W/m K)
R-15 (2.64)	R-29.3 (5.16)	R-18.5 (3.25)	0.054 (0.31)	R-9.3 (1.63)	0.108 (0.61)	0.528 (0.914)

T _{i1}	0.35	Min T on sheathing away from slab, between studs at girts
T _{i2}	0.73	Max T on sheathing away from slab, between girts at studs
T _{i3}	0.70	Min T on slab exposed to interior air, at gypsum between studs

Detail A07-SA

Exterior and Interior Insulated 3 5/8" x 1 5/8" Steel Stud (16" o.c.) Wall Assembly with Horizontal Z-girts (24" o.c.) Supporting Metal Cladding – Isokorb CM20 Thermally Broken Slab Projection with Uninsulated Curb

Assembly 1D (Nominal) R-Value	R _{1D}	R-14.3 (2.52 RSI) + exterior insulation
Transmittance / Resistance without Anomaly	U₀, R₀	"clear wall" U- and R- value, without slab
Transmittance / Resistance	U R	U- and R-values for overall assembly
Surface Temperature Index ¹	Ti	0 = exterior temperature 1 = interior temperature
Linear Transmittance	ψ	Incremental increase in transmittance per linear length of slab

Thermal Performance Indicators

¹Surface temperatures are a result of steady-state conductive heat flow with constant heat transfer coefficients. Limitations are identified in ASHRAE 1365-RP.

Nominal (1D) vs. Assembly Performance Indicators

View from Exterior

Exterior Insulation 1D R-Value (RSI)	R₁ _D ft²⋅hr.ºF / Btu (m² K / W)	R₀ ft²⋅hr.ºF / Btu (m² K / W)	U₀ Btu/ft² ⋅hr ⋅ºF (W/m² K)	R ft²⋅hr.ºF / Btu 53(m² K / W)	U Btu/ft² ⋅hr ⋅ºF (W/m² K)	Ψ Btu/ft hr ºF (W/m K)
R-15 (2.64)	R-29.3 (5.16)	R-18.5 (3.25)	0.054 (0.31)	R-11.6 (2.04)	0.087 (0.49)	0.319 (0.551)

Temperature Indices

View from Interior

T _{i1}	0.35	Min T on sheathing away from slab, between studs at girts
T _{i2}	0.73	Max T on sheathing away from slab, between girts at studs
T _{i3}	0.77	Min T on slab exposed to interior air, at gypsum between studs

Detail A08-SA

Exterior and Interior Insulated 3 5/8" x 1 5/8" Steel Stud (16" o.c.) Wall Assembly with Horizontal Z-girts (24" o.c.) Supporting Metal Cladding – Isokorb CM20 Thermally Broken Slab Projection with Insulated Curb

Thermal Performance Indicators

Assembly 1D (Nominal) R-Value	R _{1D}	R-14.3 (2.52 RSI) + exterior insulation
Transmittance / Resistance without Anomaly	U₀, R₀	"clear wall" U- and R- value, without slab
Transmittance / Resistance	U R	U- and R-values for overall assembly
Surface Temperature Index ¹	Ti	0 = exterior temperature 1 = interior temperature
Linear Transmittance	ψ	Incremental increase in transmittance per linear length of slab

¹Surface temperatures are a result of steady-state conductive heat flow with constant heat transfer coefficients. Limitations are identified in ASHRAE 1365-RP.

Nominal (1D) vs. Assembly Performance Indicators

Exterior Insulation 1D R-Value (RSI)	R₁ _D ft²⋅hr.ºF / Btu (m² K / W)	R₀ ft²⋅hr.ºF / Btu (m² K / W)	U₀ Btu/ft² ⋅hr ⋅ºF (W/m² K)	R ft²⋅hr⋅ºF / Btu (m² K / W)	U Btu/ft² ⋅hr ⋅ºF (W/m² K)	Ψ Btu/ft hr ⁰F (W/m K)
R-15 (2.64)	R-29.3 (5.16)	R-18.5 (3.25)	0.054 (0.31)	R-13.6 (2.40)	0.073 (0.42)	0.189 (0.327)

T _{i1}	0.35	Min T on sheathing away from slab, between studs at girts
T _{i2}	0.73	Max T on sheathing away from slab, between girts at studs
T _{i3}	0.85	Min T on slab exposed to interior air, at gypsum between studs

Detail B01-CC

Exterior and Interior Insulated 3 5/8" x 1 5/8" Steel Stud (16" o.c.) Wall Assembly with Intermittent Vertical Z Girts (16" o.c.) Supporting Metal Cladding –Concrete Roof Deck at Continuous Concrete Parapet

Assembly 1D (Nominal) R-Value	R1Dr, R1Dw	Two base assemblies : r = insulated roof w = steel stud wall assembly w/ intermittent vertical z Girts
Transmittance / Resistance without Anomaly	Uor Ror, Uow Row	"clear field" U- and R- values. Separate values presented for the two base assemblies
Transmittance / Resistance	U R	U and R-values for the overall assembly
Surface Temperature Index ¹	Ti	0 = exterior temperature 1 = interior temperature
Linear Transmittance	ψ	Incremental increase in transmittance per linear length of parapet

Thermal Performance Indicators

¹Surface temperatures are a result of steady-state conductive heat flow with constant heat transfer coefficients. Limitations are identified in ASHRAE 1365-RP.

Nominal (1D) vs. Assembly Performance Indicators

Base Assembly – Wall

Wall Exterior Insulation 1D R-Value (RSI)	R₁ _{Dw} ft²⋅hr.ºF / Btu (m² K / W)	R₀w ft²⋅hr.ºF / Btu (m² K / W)	U₀w Btu/ft² ⋅hr ⋅ºF (W/m² K)
R-15 (2.64)	R-29.3 (5.16)	R-18.9 (3.33)	0.053 (0.30)

Parapet Linear Transmittance

R	U	ψ
ft²⋅hr⋅ºF / Btu	Btu/ft² ⋅hr ⋅ºF	Btu/ft hr °F
(m² K / W)	(W/m² K)	(W/m K)
R-9.6 (1.69)	0.104 (0.59)	0.396 (0.686)

Temperature Indices

T _{i1}	0.52	Min T on sheathing away from roof slab, at clip
T _{i2}	0.72	Max T on sheathing away from roof slab, between clips at stud
T _{i3}	0.69	Min T on roof slab exposed to interior air, at gypsum between studs

Base Assembly - Roof

Roof Exterior Insulation 1D R-Value (RSI)	R₁Dw ft²⋅hr.ºF / Btu (m² K / W)	R₀w ft²⋅hr.ºF / Btu (m² K / W)	U _{ow} Btu/ft² ·hr ·ºF (W/m² K)
R-20 (3.52)	R-21.9 (3.86)	R-21.9 (3.86)	0.046 (0.26)

Detail B02-SA

Exterior and Interior Insulated 3 5/8" x 1 5/8" Steel Stud (16" o.c.) Wall Assembly with Intermittent Vertical Z Girts (16" o.c.) Supporting Metal Cladding –Concrete Roof Deck at Isokorb AXT1 Thermally Broken Concrete Parapet

Two base assemblies : r = insulated roof Assembly 1D R1Dr. w = steel stud wall (Nominal) R-Value R_{1Dw} assembly w/ intermittent vertical z Girts U_{or} "clear field" U- and R-Transmittance / Ror. values. Separate values Resistance without presented for the two Uow Anomaly base assemblies Row Transmittance / U and R-values for the U Resistance R overall assembly Surface 0 = exterior temperatureTi Temperature Index¹ 1 = interior temperature Incremental increase in Linear transmittance per linear Ψ Transmittance length of parapet

Thermal Performance Indicators

¹Surface temperatures are a result of steady-state conductive heat flow with constant heat transfer coefficients. Limitations are identified in ASHRAE 1365-RP.

Nominal (1D) vs. Assembly Performance Indicators

Base Assembly – Wall

Wall Exterior Insulation 1D R-Value (RSI)	R₁Dw ft²⋅hr.ºF / Btu (m² K / W)	R₀w ft²·hr.ºF / Btu (m² K / W)	U₀w Btu/ft² ⋅hr ⋅ºF (W/m² K)
R-15 (2.64)	R-29.3 (5.16)	R-18.9 (3.33)	0.053 (0.30)

Parapet Linear Transmittance

R	U	Ψ
ft²⋅hr⋅ºF / Btu	Btu/ft² ⋅hr ⋅ºF	Btu/ft hr °F
(m² K / W)	(W/m² K)	(W/m K)
R-17.4 (3.06)	0.058 (0.33)	0.058 (0.100)

Temperature Indices

T _{i1}	0.52	Min T on sheathing away from roof slab, at clip
T _{i2}	0.72	Max T on sheathing away from roof slab, between clips at stud
T _{i3}	0.90	Min T on roof slab exposed to interior air, at gypsum between studs

Base Assembly - Roof

Roof Exterior Insulation 1D R-Value (RSI)	R₁Dw ft²⋅hr.ºF / Btu (m² K / W)	R₀w ft²⋅hr.ºF / Btu (m² K / W)	U _{ow} Btu/ft² ·hr ·ºF (W/m² K)
R-20 (3.52)	R-21.9 (3.86)	R-21.9 (3.86)	0.046 (0.26)

Detail C01-CC

Exterior and Interior Insulated 3 5/8" x 1 5/8" Steel Stud (16" o.c.) Wall Assembly with Horizontal Z-girts (24" o.c.) Supporting Metal Cladding – Structural Steel Floor Intersection with Uninterrupted Beam

Thermal Performance Indicators

Assembly 1D (Nominal) R-Value	R _{1D}	R-14.3 (2.52 RSI) + exterior insulation
Transmittance / Resistance without Anomaly	U₀, R₀	"clear wall" U- and R-value without slab or beam
Transmittance / Resistance	Us Rs	U and R-values for steel stud wall with slab
Transmittance / Resistance	U R	U and R-values for the overall assembly
Surface Temperature Index ¹	Ti	0 = exterior temperature 1 = interior temperature
Linear Transmittance	ψs	Incremental increase in transmittance per linear length of floor slab
Point Transmittance	χ	Incremental increase in transmittance for beam penetration

¹Surface temperatures are a result of steady-state conductive heat flow with constant heat transfer coefficients. Limitations are identified in ASHRAE 1365-RP.

U

Btu/ft² ·hr ·°F

(W/m² K)

0.146 (0.83)

χ

Btu/hr °F

(W/K)

1.73 (0.92)

Beam Point Transmittance

R

ft²·hr·ºF / Btu

 $(m^2 K / W)$

R-6.9 (1.21)

Nominal (1D) vs. Assembly Performance Indicators

Base Assembly – Wall

Wall Exterior Insulation 1D R-Value (RSI)	R₁D ft²·hr.ºF / Btu (m² K / W)	R₀ ft²⋅hr.ºF / Btu (m² K / W)	U₀ Btu/ft² ⋅hr ⋅ºF (W/m² K)
R-15 (2.64)	R-29.3 (5.16)	R-18.5 (3.25)	0.054 (0.31)

Slab Linear Transmittance

R _s	U₅	Ψs	
ft ² ·hr·∘F / Btu	Btu/ft² ⋅hr ⋅ºF	Btu/ft hr ºF	
(m² K / W)	(W/m² K)	(W/m K)	
R-15.6 (2.75)	0.064 (0.36)	0.083 (0.143)	

T _{i1}	0.35	Min T on sheathing away from slab, between studs at girts
T _{i2}	0.73	Max T on sheathing away from slab, between girts at studs
T _{i3}	0.52	Min T on beam exposed to interior air, top flange at I-beam intersection

Detail C02-TI

Exterior and Interior Insulated 3 5/8" x 1 5/8" Steel Stud (16" o.c.) Wall Assembly with Horizontal Z-girts (24" o.c.) Supporting Metal Cladding – Structural Steel Floor Intersection with Isolator Pad

Thermal Performance Indicators

Assembly 1D (Nominal) R-Value	R _{1D}	R-14.3 (2.52 RSI) + exterior insulation
Transmittance / Resistance without Anomaly	U₀, R₀	"clear wall" U- and R-value without slab or beam
Transmittance / Resistance	Us Rs	U and R-values for steel stud wall with slab
Transmittance / Resistance	U R	U and R-values for the overall assembly
Surface Temperature Index ¹	Ti	0 = exterior temperature 1 = interior temperature
Linear Transmittance	ψs	Incremental increase in transmittance per linear length of floor slab
Point Transmittance	χ	Incremental increase in transmittance for beam penetration

¹Surface temperatures are a result of steady-state conductive heat flow with constant heat transfer coefficients. Limitations are identified in ASHRAE 1365-RP.

Nominal (1D) vs. Assembly Performance Indicators

Base Assembly – Wall

Wall Exterior Insulation 1D R-Value (RSI)	R₁D ft²⋅hr.ºF / Btu (m² K / W)	R₀ ft²⋅hr.ºF / Btu (m² K / W)	U₀ Btu/ft² ⋅hr ⋅ºF (W/m² K)
R-15 (2.64)	R-29.3 (5.16)	R-18.5 (3.25)	0.054 (0.31)

Slab Linear Transmittance

R₅	U₅	ψ₅
ft²·hr·ºF / Btu	Btu/ft² ⋅hr ⋅ºF	Btu/ft hr ºF
(m² K / W)	(W/m² K)	(W/m K)
R-15.6 (2.75)	0.064 (0.36)	0.083 (0.143)

Beam Point Transmittance

Thermal Isolator Pad	R ft ² ·hr·ºF / Btu (m² K / W)	U Btu/ft² ⋅hr ⋅ºF (W/m² K)	χ Btu/hr ºF (W/K)
5 mm pad, stainless steel bolts	R-6.0 (1.06)	0.167 (0.95)	2.17 (1.15)
5 mm pad, steel bolts	R-5.9 (1.04)	0.170 (0.97)	2.24 (1.19)
5 mm pad, stainless steel bolts, w/ R10 outboard of plates	R-6.4 (1.13)	0.156 (0.89)	1.80 (1.03)
10 mm pad, stainless steel bolts	R-6.7 (1.17)	0.150 (0.85)	1.82 (0.97)
10 mm pad, steel bolts	R-6.5 (1.15)	0.153 (0.87)	1.89 (1.00)
19 mm pad, steel bolts	R-6.9 (1.22)	0.145 (0.82)	1.71 (0.91)
25 mm pad, steel bolts	R-7.1 (1.25)	0.140 (0.80)	1.61 (0.86)

	5 mm pad, stainless bolts	5 mm pad, steel bolts	5 mm pad, stainless bolts, w/ R10	10 mm pad, stainless bolts	10 mm pad, steel bolts	
T _{i1}	0.35	0.35	0.35	0.35	0.35	Min T on sheathing away from slab, between studs at girts
T _{i2}	0.73	0.73	0.73	0.73	0.73	Max T on sheathing away from slab, between girts at studs
T _{i3}	0.33	0.32	0.39	0.42	0.41	Min T on beam exposed to interior air, top flange at I-beam intersection

Detail C03-SA

Exterior and Interior Insulated 3 5/8" x 1 5/8" Steel Stud (16" o.c.) Wall Assembly with Horizontal Z-girts (24" o.c.) Supporting Metal Cladding – Structural Steel Floor Intersection with Isokorb S22 Thermally Broken Beam

Thermal Performance Indicators

Assembly 1D (Nominal) R-Value	R _{1D}	R-14.3 (2.52 RSI) + exterior insulation
Transmittance / Resistance without Anomaly	U₀, R₀	"clear wall" U- and R-value without slab or beam
Transmittance / Resistance	Us Rs	U and R-values for steel stud wall with slab
Transmittance / Resistance	U R	U and R-values for the overall assembly
Surface Temperature Index ¹	Ti	0 = exterior temperature 1 = interior temperature
Linear Transmittance	ψs	Incremental increase in transmittance per linear length of floor slab
Point Transmittance	χ	Incremental increase in transmittance for beam penetration

¹Surface temperatures are a result of steady-state conductive heat flow with constant heat transfer coefficients. Limitations are identified in ASHRAE 1365-RP.

Nominal (1D) vs. Assembly Performance Indicators

Base Assembly – Wall

Wall Exterior Insulation 1D R-Value (RSI)	R _{w1D} ft²·hr.ºF / Btu (m² K / W)	R₀ ft²·hr.ºF / Btu (m² K / W)	U₀ Btu/ft² ⋅hr ⋅ºF (W/m² K)
R-15 (2.64)	R-29.3 (5.16)	R-18.5 (3.25)	0.054 (0.31)

Slab Linear Transmittance

R₅	U₅	ψ₅
ft ^{2.} hr.ºF / Btu	Btu/ft² ⋅hr ⋅ºF	Btu/ft hr ºF
(m² K / W)	(W/m² K)	(W/m K)
R-15.6 (2.75)	0.064 (0.36)	0.083 (0.143)

Temperature Indices

T _{i1}	0.32	Min T on sheathing away from slab, between studs at girts
T _{i2}	0.89	Max T on sheathing away from slab, between girts at studs
T _{i3}	0.79	Min T on beam exposed to interior air, top flange at I-beam intersection

R	U	χ
ft²⋅hr.ºF / Btu	Btu/ft² ⋅hr ⋅ºF	Btu/hr ⁰F
(m² K / W)	(W/m² K)	(W/K)
R-9.4 (1.65)	0.107 (0.61)	0.91 (0.48)

Detail D01-CC

Exterior Insulated 3 5/8" x 1 5/8" Steel Stud (16" o.c.) Wall Assembly with Intermittent Vertical Z-girts (16" o.c.) Supporting Metal Cladding – Concrete Floor to Steel Beam Connection

View from Interior

View from Exterior

Thermal Performance Indicators

Assembly 1D (Nominal) R-Value	R _{1D}	R-3.2 (0.56 RSI) + exterior insulation
Transmittance / Resistance without Anomaly	U₀, R₀	"clear wall" U- and R-value without slab or beam
Transmittance / Resistance	Us Rs	U and R-values for steel stud wall with slab
Transmittance / Resistance	U R	U and R-values for the overall assembly
Surface Temperature Index ¹	Ti	0 = exterior temperature 1 = interior temperature
Linear Transmittance	ψs	Incremental increase in transmittance per linear length of floor slab
Point Transmittance	χ	Incremental increase in transmittance for beam penetration

¹Surface temperatures are a result of steady-state conductive heat flow with constant heat transfer coefficients. Limitations are identified in ASHRAE 1365-RP.

Nominal (1D) vs. Assembly Performance Indicators

Base Assembly – Wall

Exterior Insulation 1D R-Value (RSI)	R₁D ft²·hr.ºF / Btu (m² K / W)	R₀ ft²·hr.ºF / Btu (m² K / W)	U₀ Btu/ft² ⋅hr ⋅ºF (W/m² K)
R-15 (2.64)	R-18.2 (3.20)	R-13.8 (2.44)	0.072 (0.41)

Slab Linear Transmittance

R₅	U₅	Ψs
ft ^{2.} hr.ºF / Btu	Btu/ft² ⋅hr ⋅ºF	Btu/ft hr ºF
(m² K / W)	(W/m² K)	(W/m K)
R-12.7 (2.24)	0.079 (0.45)	0.052 (0.090)

Temperature Indices

T _{i1}	0.44	Min T on sheathing, at slab, in line with beam
T _{i2}	0.88	Max T on sheathing, at studs, between clips
T _{i3}	0.40	Min T on slab exposed to interior air, at sheathing, in line with beam

R	U	χ
ft ^{2.} hr·ºF / Btu	Btu/ft² ⋅hr ⋅ºF	Btu/hr ⁰F
(m ² K / W)	(W/m² K)	(W/K)
R-7.3 (1.28)	0.137 (0.78)	1.24 (0.66)

Detail D02-TI

Exterior Insulated 3 5/8" x 1 5/8" Steel Stud (16" o.c.) Wall Assembly with Intermittent Vertical Z-girts (16" o.c.) Supporting Metal Cladding – Concrete Floor to Steel Beam with a Thermal Isolator Pad Connection

Thermal Performance Indicators

Assembly 1D (Nominal) R-Value	R _{1D}	R-3.2 (0.56 RSI) + exterior insulation
Transmittance / Resistance without Anomaly	U₀, R₀	"clear wall" U- and R-value without slab or beam
Transmittance / Resistance	Us Rs	U and R-values for steel stud wall with slab
Transmittance / Resistance	U R	U and R-values for the overall assembly
Surface Temperature Index ¹	Ti	0 = exterior temperature 1 = interior temperature
Linear Transmittance	ψs	Incremental increase in transmittance per linear length of floor slab
Point Transmittance	χ	Incremental increase in transmittance for beam penetration

¹Surface temperatures are a result of steady-state conductive heat flow with constant heat transfer coefficients. Limitations are identified in ASHRAE 1365-RP.

Nominal (1D) vs. Assembly Performance Indicators

Base Assembly – Wall

Exterior Insulation 1D R-Value (RSI)	R₁ _D ft²⋅hr.ºF / Btu (m² K / W)	R₀ ft²⋅hr.ºF / Btu (m² K / W)	U₀ Btu/ft² ⋅hr ⋅ºF (W/m² K)
R-15 (2.64)	R-18.2 (3.20)	R-13.8 (2.44)	0.072 (0.41)

Slab Linear Transmittance

Rs	U₅	ψ₅
ft ² ·hr·⁰F / Btu	Btu/ft² ⋅hr ⋅ºF	Btu/ft hr ºF
(m² K / W)	(W/m² K)	(W/m K)
R-12.7 (2.24)	0.079 (0.45)	0.052 (0.090)

Temperature Indices

T _{i1}	0.44	Min T on sheathing, at slab, in line with beam
T _{i2}	0.88	Max T on sheathing, at studs, between clips
T _{i3}	0.54	Min T on slab exposed to interior air, at sheathing, in line with beam

R	U	χ
ft ^{2.} hr.ºF / Btu	Btu/ft² ⋅hr ⋅ºF	Btu/hr ⁰F
(m² K / W)	(W/m² K)	(W/K)
R-8.2 (1.45)	0.121 (0.69)	0.91 (0.48)

Detail D03-SA

Exterior Insulated 3 5/8" x 1 5/8" Steel Stud (16" o.c.) Wall Assembly with Intermittent Vertical Z-girts (16" o.c.) Supporting Metal Cladding – Concrete Floor to Steel Beam with Isokorb KS14 Connection

Thermal Performance Indicators

Assembly 1D (Nominal) R-Value	R _{1D}	R-3.2 (0.56 RSI) + exterior insulation
Transmittance / Resistance without Anomaly	U₀, R₀	"clear wall" U- and R-value without slab or beam
Transmittance / Resistance	Us Rs	U and R-values for steel stud wall with slab
Transmittance / Resistance	U R	U and R-values for the overall assembly
Surface Temperature Index ¹	Ti	0 = exterior temperature 1 = interior temperature
Linear Transmittance	ψs	Incremental increase in transmittance per linear length of floor slab
Point Transmittance	χ	Incremental increase in transmittance for beam penetration

¹Surface temperatures are a result of steady-state conductive heat flow with constant heat transfer coefficients. Limitations are identified in ASHRAE 1365-RP.

Nominal (1D) vs. Assembly Performance Indicators

Base Assembly – Wall

Exterior Insulation 1D R-Value (RSI)	R _{1D} ft²⋅hr.ºF / Btu (m² K / W)	R₀ ft²·hr.ºF / Btu (m² K / W)	U₀ Btu/ft² ⋅hr ⋅ºF (W/m² K)
R-15 (2.64)	R-18.2 (3.20)	R-13.8 (2.44)	0.072 (0.41)

Slab Linear Transmittance

R₅	U₅	ψ₅
ft ^{2.} hr.ºF / Btu	Btu/ft² ⋅hr ⋅ºF	Btu/ft hr ºF
(m² K / W)	(W/m² K)	(W/m K)
R-12.7 (2.24)	0.079 (0.45)	0.052 (0.090)

Temperature Indices

T _{i1}	0.44	Min T on sheathing, at slab, in line with beam
T _{i2}	0.88	Max T on sheathing, at studs, between clips
T _{i3}	0.84	Min T on slab exposed to interior air, at sheathing, in line with beam

R	U	χ
ft ² ·hr·ºF / Btu	Btu/ft² ⋅hr ⋅ºF	Btu/hr ⁰F
(m ² K / W)	(W/m² K)	(W/K)
R-12.2 (2.14)	0.082 (0.47)	0.07 (0.04)

Detail E01-CC

Interior Insulated Concrete Mass Wall with 1 5/8" Steel Studs (16" o.c.) Supporting Interior Finish – Continuous Concrete Floor **Slab Intersection**

	0.90	Ass (No
	0.70	Tra Res
	0.60	Ano
	0.50	Tra
	0.40	Res
	0.30	Sur
	0.20	Ten
	0.10	Line Trai
torior	0.00 -	¹ Surf

Thermal Performance Indicators

Assembly 1D (Nominal) R-Value	R _{1D}	R-2.9 (0.51 RSI) + exterior insulation
Transmittance / Resistance without Anomaly	U₀, R₀	"clear wall" U- and R- value, without slab
Transmittance / Resistance	U R	U and R-values for the assembly
Surface Temperature Index ¹	Ti	0 = exterior temperature 1 = interior temperature
Linear Transmittance	ψ	Incremental increase in transmittance per linear length of slab

ace temperatures are a result of steady-state conductive heat flow with constant heat transfer coefficients. Limitations are identified in ASHRAE 1365-RP.

Nominal (1D) vs. Assembly Performance Indicators

Exterior Insulation 1D R-Value (RSI)	R₁ _D ft ² ·hr.ºF / Btu (m² K / W)	R₀ ft²·hr.ºF / Btu (m² K / W)	U₀ Btu/ft² ⋅hr ⋅ºF (W/m² K)	R ft²⋅hr.ºF / Btu (m² K / W)	U Btu/ft² ⋅hr ⋅°F (W/m² K)	Ψ Btu/ft hr ºF (W/m K)
R-10.0 (1.76)	R-12.9 (2.26)	R-12.2 (2.15)	0.082 (0.47)	R-7.5 (1.32)	0.134 (0.76)	0.447 (0.773)

T _{i1}	0.84	Min T on insulation away from slab, between studs
T _{i2}	0.87	Max T on insulation away from slab, at studs
T _{i3}	0.57	Min T on slab exposed to interior air, at insulation between studs

Detail E02-SA

Interior Insulated Concrete Mass Wall with 1 5/8" Steel Studs (16" o.c.) Supporting Interior Finish – Isokorb Rutherma DF Thermally Broken Concrete Floor Slab Intersection

1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00

View from Interior

View from Exterior

Thermal Performance Indicators

Assembly 1D (Nominal) R-Value	R _{1D}	R-2.9 (0.51 RSI) + exterior insulation
Transmittance / Resistance without Anomaly	U₀, R₀	"clear wall" U- and R- value, without slab
Transmittance / Resistance	U R	U and R-values for the assembly
Surface Temperature Index ¹	Ti	0 = exterior temperature 1 = interior temperature
Linear Transmittance	ψ	Incremental increase in transmittance per linear length of slab

¹Surface temperatures are a result of steady-state conductive heat flow with constant heat transfer coefficients. Limitations are identified in ASHRAE 1365-RP.

Nominal (1D) vs. Assembly Performance Indicators

Exterior Insulation 1D R-Value (RSI)	R₁ _D ft²⋅hr.ºF / Btu (m² K / W)	R₀ ft²·hr.ºF / Btu (m² K / W)	U₀ Btu/ft² ⋅hr ⋅ºF (W/m² K)	R ft²⋅hr⋅ºF / Btu (m² K / W)	U Btu/ft² ·hr ·ºF (W/m² K)	Ψ Btu/ft hr ⁰F (W/m K)
R-10.0 (1.76)	R-12.9 (2.26)	R-12.2 (2.15)	0.082 (0.47)	R-9.7 (1.72)	0.103 (0.58)	0.179 (0.310)

T _{i1}	0.84	Min T on insulation away from slab, between studs
T _{i2}	0.87	Max T on insulation away from slab, at studs
T _{i3}	0.70	Min T on slab exposed to interior air, at insulation between studs

APPENDIX C: Thermal Resistance Tables

Scenario		Description	Clear Wall R- value ft² ·hr ·°F/Btu (m²K/W)	Overall R- value ft² ·hr ·°F/Btu (m²K/W)	₩ Btu/ft ·hr ·°F (W/mK)	% Reduction in Heat Loss
ntional uction	A01-CC	Without insulation at curb	R-11.3 (1.99)	R-6.8 (1.19)	0.584 (1.011)	-
Conve Constr	A02-CC	With insulation at curb	R-11.3 (1.99)	R-7.3 (1.28)	0.485 (0.840)	17%
Manufactured Thermal Break (Isokorb CM20)	A03-SA	Without insulation at curb	R-11.3 (1.99)	R-8.7 (1.53)	0.261 (0.452)	55%
	A04-SA	With insulation at curb	R-11.3 (1.99)	R-10 (1.76)	0.117 (0.203)	80%

Table C1: Thermal resistance of of R-15 exterior insulated steel stud assemblies with cantilevered concrete slab

Tabla	<u></u>	Thormol	ragiotopoo		12 001	it inculated		l accomblica	with	oontilovered.	oonoroto oloh
I able	UZ.	menna	resistance	01 K-10/F	(- 12 SPI	it insulated	i Sleei Sluc	assemblies	WILLI	cantilevereu	

Scenario		Description	Clear Wall R-value ft² ·hr ·°F/Btu (m²K/W)	Overall R- value ft² ·hr ·°F/Btu (m²K/W)	₩ Btu/ft ·hr ·°F (W/mK)	% Reduction in Heat Loss
ntional uction	A05-CC	Without insulation at curb	R-18.5 (3.25)	R-8.6 (1.51)	0.612 (1.059)	-
Conve Constr	A06-CC	With insulation at curb	R-18.5 (3.25)	R-9.3 (1.63)	0.528 (0.914)	14%
Manufactured Thermal Break (Isokorb CM20)	A07-SA	Without insulation at curb	R-18.5 (3.25)	R-11.6 (2.04)	0.319 (0.528)	48%
	A08-SA	With insulation at curb	R-18.5 (3.25)	R-13.6 (2.4)	0.189 (0.327)	69%

Scenario		Description	Clear Wall R-value ft² ·hr ·°F/Btu (m²K/W)	Clear Roof R-value ft² ·hr ·°F/Btu (m²K/W)	Overall R- value ft² ·hr ·°F/Btu (m²K/W)	₩ Btu/ft ·hr ·°F (W/mK)	% Reduction in Heat Loss
Conventional Construction	B01-CC	Continuous concrete parapet bypassing interior wall and roof insulation	R-18.9 (3.33)	R-21.9 (3.86)	R-9.6 (1.69)	0.396 (0.686)	-
Manufactured Thermal Break (Isokorb AXT1)	B02- SA	Concrete parapet and roof separated by AXT1 Thermal Break	R-18.9 (3.33)	R-21.9 (3.86)	R-17.4 (3.06)	0.058 (0.100)	85%

 Table C3: Thermal resistance of R-15/R-12 split insulated steel stud assembly at a concrete parapet and roof deck with R-20 insulation

Table C4: Thermal resistance of structural steel beam penetration through R-15/R-12 split insulated steel stud

Scenario		Description	Clear Wall R-value ft² ·hr ·°F/Btu (m²K/W)	Overall R- value ft² ·hr ·°F/Btu (m²K/W)	X Btu/hr ⋅°F (W/K)	% Reduction in Heat Loss
Conventional Construction	C01-CC	Uninterrupted steel through beam	R-18.5 (3.25)	R-6.9 (1.21)	1.73 (0.92)	-
	C02-TI	5 mm isolator pad, stainless steel bolts	R-18.5 (3.25)	R-6 (1.06)	2.17 (1.15)	-26%
bd		5 mm isolator pad, steel bolts	R-18.5 (3.25)	R-5.9 (1.04)	2.24 (1.19)	-30%
ator Pe		5 mm pad, stainless steel bolts, R- 10 outboard of flanges	R-18.5 (3.25)	R-6.4 (1.13)	1.94 (1.03)	-12%
al Isola		10 mm isolator pad, stainless steel bolts	R-18.5 (3.25)	R-6.7 (1.17)	1.82 (0.97)	-5%
erme		10 mm isolator pad, steel bolts	R-18.5 (3.25)	R-6.5 (1.15)	1.89 (1.00)	-9%
Th€		19 mm isolator pad, steel bolts	R-18.5 (3.25)	R-6.9 (1.22)	1.71 (0.91)	1%
		25 mm isolator pad, steel bolts	R-18.5 (3.25)	R-7.1 (1.25)	1.61 (0.86)	7%
Manufactured Thermal Break (Isokorb S22)	C03-SA	Steel beam separated by Isokorb S22 thermal break	R-18.5 (3.25)	R-9.4 (1.65)	0.91 (0.48)	48%

Scenario		Description	Clear Wall R-value ft² ·hr ·°F/Btu (m²K/W)	Overall R- value ft² ·hr ·°F/Btu (m²K/W)	X Btu/hr→°F (W/K)	% Reduction in Heat Loss
Conventional Construction	D01-CC	Steel beam bypassing exterior insulation	R-13.8 (2.44)	R-7.3 (1.28)	1.24 (0.66)	-
Thermal Isolator Pad	D02-TI	10mm Isolator pad between steel beam and concrete	R-13.8 (2.44)	R-8.2 (1.45)	0.91 (0.48)	27%
Manufactured Thermal Break (Isokorb KS14)	D03-SA	Isokorb KS14 thermal break between steel beam and concrete	R-13.8 (2.44)	R-12.2 (2.14)	0.07 (0.04)	94%

Table C5: Thermal resistance of concrete floor slab to structural steel balcony with a R-15/R-12 split insulated steel
stud wall assembly

Table C6: Thermal resistance of R-10 Interior insulated poured-in place concrete wall at floor slab interface

Scenario		Description	Clear Wall R-value ft² ·hr ·°F/Btu (m²K/W)	Overall R- value ft² ·hr ·°F/Btu (m²K/W)	₩ Btu/ft ·hr ·°F (W/mK)	% Reduction in Heat Loss
Conventional Construction	E01-CC	Continuous concrete floor to wall connection, bypassing interior insulation	R-12.2 (2.15)	R-7.5 (1.32)	0.447 (0.773)	-
Manufactured Thermal Break (Isokorb Rutherma DF)	E02-SA	Concrete wall and floor separated by Rutherma DF Thermal Break	R-12.2 (2.15)	R-9.7 (1.72)	0.179 (0.310)	60%

APPENDIX D: Design Condition Thermal Profiles

Table D1: Thermal profiles for cantilevered concrete with exterior insulated steel stud assembly

Table D2: Thermal profiles for cantilevered concrete with split insulated steel stud assembly

Table D3: Temperature profiles for concrete parapets

Table D4: Temperature profiles for steel to steel connections

Table D5: Temperature profiles for concrete floor slabs to steel connections

Table D6: Temperature profiles for interior insulated poured-in-place concrete

